
DepthAI Docs

Luxonis

Jan 23, 2024

CONTENTS

1 DepthAI Viewer 3

2 Example Use Cases 5

3 Tools & API Examples 7

4 Ecosystem 9
4.1 First steps with DepthAI . 10
4.2 Spatial AI . 14
4.3 AI / ML / NN . 17
4.4 Depth perception . 46
4.5 Computer Vision . 48
4.6 On-device programming . 52
4.7 FAQs & How-To . 58
4.8 OAK as a webcam . 97
4.9 Troubleshooting . 98
4.10 SLAM with OAK . 105
4.11 OAK on drones . 106
4.12 OAK for Education . 107
4.13 Support . 108

i

ii

DepthAI Docs

DepthAI is a Spatial AI platform that is used for communication with and development of our devices; OAK cameras
and RAE robots.

It allows you to develop projects and products that require:

1. Artificial Intelligence

2. Computer Vision

3. Depth perception (Stereo, ToF)

4. Performant (high resolution and FPS, multiple sensors)

5. Embedded, low power solution

Best of all, it is modular and you can integrate this technology into your products.

CONTENTS 1

https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#internal-block-diagram-of-stereodepth-node
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM0256/
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/supported_sensors.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/integrating_depthai_into_products.html

DepthAI Docs

2 CONTENTS

CHAPTER

ONE

DEPTHAI VIEWER

DepthAI Viewer is the visualization tool for DepthAI and OAK cameras. It’s a GUI application that will run a demo
app by default, which will visualize all streams and run inference on the device. It also allows you to change the
configuration of the device. DepthAI viewer works for USB and POE cameras.

To install and run the DepthAI Viewer, run the following commands in the terminal:

python3 -m pip install depthai-viewer
Run the DepthAI Viewer
python3 -m depthai_viewer

We have also prepared a step by step guide here with detailed instructions how to set up your DepthAI and run this
script.

3

https://github.com/luxonis/depthai-viewer#depthai-viewer-the-visualization-tool-for-depthai

DepthAI Docs

4 Chapter 1. DepthAI Viewer

CHAPTER

TWO

EXAMPLE USE CASES

In this section, you’ll find an inspiration what can you build right away with DepthAI.

5

DepthAI Docs

6 Chapter 2. Example Use Cases

CHAPTER

THREE

TOOLS & API EXAMPLES

In this section, you’ll see examples of various API usage permutations, to show what the API is capable of or to solve
some meta problem, like how to stream the data, how to collect it and alike.

OCR This pipeline implements text detection (EAST) followed by optical character recognition of the de-
tected text

Multiple
Devices

This example shows how you can use multiple DepthAI’s on a single host. The demo will find all
devices connected to the host and display an RGB preview from each of them

Face
recogni-
tion

Detects all faces in the frame, gets face feature vectors and compares it with database to perform face
recognition

Mes-
sage
Syncing

This example shows how to sync messages (eg. NN results with frames) with software, based on either
timestamps or sequence numbers

License
plate
recogni-
tion

Detects license plates and performs license plate recognition operation on the camera itself

WLS
Filtering

This example demonstrates how to do host-side WLS filtering using the rectified_right and depth stream
from DepthAI API

QR
code
scanner

QR Code detection model running on the device combined with on-host QR code decoder

Deploy
Roboflow
models

Deploy over 10,000 pre-trained AI models from Roboflow Universe and your own Roboflow custom
models

7

https://github.com/luxonis/depthai-experiments/tree/master/gen2-ocr
https://github.com/luxonis/depthai-experiments/tree/master/gen2-multiple-devices
https://github.com/luxonis/depthai-experiments/tree/master/gen2-multiple-devices
https://github.com/luxonis/depthai-experiments/tree/master/gen2-face-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-face-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-face-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-syncing
https://github.com/luxonis/depthai-experiments/tree/master/gen2-syncing
https://github.com/luxonis/depthai-experiments/tree/master/gen2-syncing
https://github.com/luxonis/depthai-experiments/tree/master/gen2-license-plate-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-license-plate-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-license-plate-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-license-plate-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-wls-filter
https://github.com/luxonis/depthai-experiments/tree/master/gen2-wls-filter
https://github.com/luxonis/depthai-experiments/tree/master/gen2-qr-code-scanner
https://github.com/luxonis/depthai-experiments/tree/master/gen2-qr-code-scanner
https://github.com/luxonis/depthai-experiments/tree/master/gen2-qr-code-scanner
https://blog.roboflow.com/deploy-roboflow-model-luxonis-depth-sdk
https://blog.roboflow.com/deploy-roboflow-model-luxonis-depth-sdk
https://blog.roboflow.com/deploy-roboflow-model-luxonis-depth-sdk

DepthAI Docs

8 Chapter 3. Tools & API Examples

CHAPTER

FOUR

ECOSYSTEM

Table 1: Core Repositories
depthai-
python

Here you’ll find Python bindings creating the Python API of DepthAI

depthai-
core

Our core API written in C++

depthai-
ros

DepthAI ROS Wrapper. This is an attempt at basic DepthAI to ROS2 interface. It’s largely leveraging
the existing depthai-python examples.

depthai-
unity

DepthAI Unity Wrapper projects and examples. Useful for synthetic dataset generation.

depthai-
hardware

This repository contains Luxonis open sourced baseboards, and contains Altium design files, documen-
tation, and pictures to help you understand more about the embedded hardware that powers DepthAI.

depthai-
ml-
training

Here you can find repositories to help you connect your NN and create BLOBs.

Table 2: Demo Repositories
depthai-
experiments

In this repository, you’ll find various experiments using DepthAI. You can use those examples as a basis
or a reference in your application.

depthai This repo contains a demo application, which can load different networks, create pipelines, record
video, etc. This program includes an example of depth & CNN inference and ready to use models.

depthai-
core-
example

CMake example project which serves as a template on how to quickly get started with C++ and depthai
library

depthai-
tutorials

This repo contains source code for tutorials published on docs.luxonis.com.

depthai-
docker

This repository contains a Dockerfile, that allows you to run OpenVINO on DepthAI inside a Docker
container.

9

https://github.com/luxonis/depthai-python/
https://github.com/luxonis/depthai-python/
https://github.com/luxonis/depthai-core/
https://github.com/luxonis/depthai-core/
https://github.com/luxonis/depthai-ros/
https://github.com/luxonis/depthai-ros/
https://github.com/luxonis/depthai-unity
https://github.com/luxonis/depthai-unity
https://github.com/luxonis/depthai-hardware/
https://github.com/luxonis/depthai-hardware/
https://github.com/luxonis/depthai-ml-training/
https://github.com/luxonis/depthai-ml-training/
https://github.com/luxonis/depthai-ml-training/
https://github.com/luxonis/depthai-experiments/
https://github.com/luxonis/depthai-experiments/
https://github.com/luxonis/depthai/
https://github.com/luxonis/depthai-core-example/
https://github.com/luxonis/depthai-core-example/
https://github.com/luxonis/depthai-core-example/
https://github.com/luxonis/depthai-tutorials/
https://github.com/luxonis/depthai-tutorials/
https://github.com/luxonis/depthai-docker/
https://github.com/luxonis/depthai-docker/

DepthAI Docs

4.1 First steps with DepthAI

This guide will go through the first steps with OAK camera and DepthAI library:

1. Installing DepthAI

2. Device setup - connecting the OAK camera to your (host) computer

3. Running DepthAI Viewer, the visualization GUI app for DepthAI

4. Next steps; examples, demos, API docs

4.1.1 Installing DepthAI

Follow instructions below to install DepthAI and its dependencies/requirements with an installer.

macOS

Execute the script below to install DepthAI on macOS:

bash -c "$(curl -fL https://docs.luxonis.com/install_depthai.sh)"

Please refer to this documentation if any issues occur.

Windows

Windows 10/11 users can install DepthAI with the Windows Installer.

Installer will install either the newer DepthAI Viewer (visualization GUI application), or DepthAI Demo (python
script, older GUI application) or and all the dependencies. We suggest using the DepthAI Viewer.

After the installer finishes, you can directly run the DepthAI app from the list of applications, which will run the
installed demo. You can skip Setup section (as Installer performs the whole setup) of this tutorial and go directly to
DepthAI Viewer.

Linux

Execute the script below to install DepthAI on Linux systems:

sudo wget -qO- https://docs.luxonis.com/install_depthai.sh | bash

Please refer to Installation documentation if any issues occur.

If you would like to avoid using installer and would prefer manually installing dependencies, requirements and
DepthAI, see Manual DepthAI installation.

4.1.2 Device setup

Now that we have installed requirements, we can setup the device. OAK cameras can be separated into two categories
depending on how you connect to them; either via ethernet (OAK PoE cameras) or via USB (all others).

OAK USB camera

If your OAK came with an included USB cable, we suggest using that to connect the OAK camera to the host computer.

Warning: Make sure to use USB3 cable, as this is has been a very common culprit of OAK connectivity issues.
If you aren’t using USB3 cable, force USB2 communication.

10 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/install/#macos
https://github.com/luxonis/depthai/releases/download/v3.4.0/DepthAI-setup-v3.4.0.exe
https://github.com/luxonis/depthai-viewer/
https://docs.luxonis.com/projects/api/en/latest/install/#supported-platforms
https://docs.luxonis.com/projects/hardware/en/latest/#poe-designs

DepthAI Docs

USB3 cable is colored blue in the inside of the USB-A connector of the USB-C cable. If it’s not blue, it might be
USB2 charging cable.

Make sure that the device is connected to your host (which can be a PC or Raspberry Pi or another capable computer)
directly to a USB3 port, or via a powered USB hub.

OAK PoE camera

If you are using OAK PoE device, you will first need to connect the device to a PoE switch or a PoE injector. We
recommend following the Getting started with OAK PoE devices for a step-by-step tutorial.

4.1.3 DepthAI Viewer

After the installer finishes, you can run the DepthAI Viewer by running:

depthai-viewer
OR
python3 -m depthai_viewer

Running the Viewer for the first time, the app will download a default mobilenet-ssd model, configure the OAK camera
and then show default streams from the camera.

4.1. First steps with DepthAI 11

https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html

DepthAI Docs

4.1.4 Default model

While the Viewer is running, you can see detection results, and if you are standing in front of the camera, you should
see yourself detected as a person with a high probability.

The model that is used by default is a MobileNetv2 SSD object detector trained on the PASCAL 2007 VOC classes,
which are:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: airplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, TV/monitor

So give it a try to detect different objects, like bottles or apples

12 Chapter 4. Ecosystem

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

DepthAI Docs

4.1.5 Next steps

In the previous sections, we learned how to preview basic DepthAI features. From this point, you can explore the
DepthAI world further

• Usecases

Check our Example Use Cases for ready to use applications that solve a specific problem on DepthAI

• Getting started with coding

Be sure to check hello world tutorial on API section for a step-by-step introduction to the API

• Train and deploy a custom model to OAK

Visit Custom training page for ready to use Colab notebooks

• Already built apps for OAK devices

See luxonis/depthai-experiments repository for apps built with depthai library

• Depthai API library repository

See luxonis/depthai-python repository which contains Python bindings for the depthai API library, Code samples
and various utility programs.

4.1. First steps with DepthAI 13

https://docs.luxonis.com/projects/api/en/latest/tutorials/hello_world/
https://github.com/luxonis/depthai-experiments
https://github.com/luxonis/depthai-python
https://docs.luxonis.com/projects/api/en/latest/tutorials/code_samples/

DepthAI Docs

4.2 Spatial AI

Spatial AI allows robots or computers to perceive the world as a human can - what objects or features are - and where
they are in the physical world. DepthAI platform leverages Spatial AI by fusing AI capabilities with depth perception
on the OAK camera itself.

There are a few different approaches to achieve AI + depth fusion:

1. Neural inference fused with depth map

2. Semantic depth

3. Stereo neural inference

4.2.1 1. Neural inference fused with depth map

DepthAI can fuse neural inference (object/landmark detection) results with a depth map to estimate spatial coordinates
(XYZ) of all objects/landmarks in the scene.

This technique is excellent for existing (pre-trained) 2D object/feature detectors as it runs inference on color/mono
frames, and uses resulting bounding boxes to determine ROIs (regions-of-interest). DepthAI then averages depth from
depth map inside these ROIs and calculates spatial coordinates from that (calculation here).

3D Object Localization

First, let us define what ‘Object Detection’ is. It is the technical term for finding the bounding box of an object of
interest, in an image’s pixel space (i.e., pixel coordinates),.

3D Object Localization (or 3D Object Detection) is all about finding objects in physical space instead of pixel space.
It is useful when measuring or interacting with the physical world in real-time.

Below is a visualization to showcase the difference between Object Detection and 3D Object Localization:

14 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments/blob/master/gen2-calc-spatials-on-host/calc.py#L39-L64
https://pjreddie.com/darknet/yolo/

DepthAI Docs

DepthAI extends these 2D neural networks (eg. MobileNet, Yolo) with spatial information to give them 3D context.

On the image above, a depthai application runs MobileNet object detector and fuses object detections with a depth
map to provide spatial coordinates (XYZ) of objects it sees: person, potted plant, bottle, and chair.

3D Landmark Localization

An example would be a hand landmark detector on DepthAI. With a regular camera, this network returns the 2D (XY)
coordinates of all 21 hand landmarks (contours of all joints in fingers). Using this same network with DepthAI, these
21 hand landmarks are now 3D points in physical space instead of 2D points in pixel space

Demos: hand landmark (above), human pose landmark, and facial landmark detection demos.

4.2. Spatial AI 15

https://www.youtube.com/watch?v=2J5YFehJ3N4
https://www.youtube.com/watch?v=xXXsT6afW6E
https://github.com/geaxgx/depthai_hand_tracker
https://github.com/geaxgx/depthai_blazepose
https://github.com/luxonis/depthai-experiments/tree/master/gen2-facemesh#gen2-facial-landmarks-on-depthai

DepthAI Docs

4.2.2 2. Semantic depth

One of the classic problems in autonomous robotic navigation/actuation are unknown objects. Known objects are
specified before the installation to be encountered - such as tools, other machines, workers, equipment, and facilities.

We cannot anticipate unknown objects - including those unknowable or never-before-seen. Training an object detector
is sufficient for known objects as this is a “positive” form of object detection: “Pile in the path, stop.” “Shovel in the
path, stop.” etc.

Such generic obstacle avoidance scenarios require a “negative” object detection system, and a very effective technique
is to use semantic segmentation of RGB, Depth, or RGB+Depth.

The image above was taken from Greenzie’s robotic lawnmowers (from OpenCV weekly livestream).

16 Chapter 4. Ecosystem

https://youtu.be/LGGtF_4v5sQ?t=3405
https://www.greenzie.com/
https://youtu.be/LGGtF_4v5sQ?t=3405

DepthAI Docs

In such a “negative” system, the semantic segmentation system is trained on all the surfaces that are not objects.
So anything that is not that surface is considered an object - allowing the navigation to know its location and take
commensurate action (stop, go around, turn around, etc.). So the semantic depth is extremely valuable for object
avoidance and navigation planning application.

On the image above, a person semantic segmentation model is running on RGB frames, and, based on the results, it
crops depth maps only to include the person’s depth.

4.2.3 3. Stereo neural inference

In this mode, the neural inference (landmark detection) is run on the left and right cameras to produce stereo inference
results. Unlike monocular neural inference fused with stereo depth - there is no max disparity search limit - so
the minimum distance is purely limited by the greater of (a) horizontal field of view (HFOV) of the stereo cameras
themselves and (b) the hyperfocal distance of the cameras (minimal distance for objects to be in focus).

After we have 2D positions of landmarks from both left/right cameras, we can calculate the disparity of the results,
which are then triangulated with the calibrated camera intrinsics to give the 3D position of all the detected features.

For more information, check out the Stereo neural inference demo.

Examples include finding the 3D locations of:

• Facial landmarks (eyes, ears, nose, edges of the mouth, etc.)

• Features on a product (screw holes, blemishes, etc.)

• Joints on a person (e.g., elbow, knees, hips, etc.)

• Features on a vehicle (e.g. mirrors, headlights, etc.)

• Pests or disease on a plant (i.e. features that are too small for object detection + stereo depth)

This mode does not require the neural networks to be trained with depth data. DepthAI takes standard, off-the-shelf
2D networks (which are significantly more common) and uses this stereo inference to produce accurate 3D results.

4.3 AI / ML / NN

4.3.1 Converting model to MyriadX blob

Local OpenVINO Model Conversion

In this tutorial, you’ll learn how to convert OpenVINO IR models into the format required to run on DepthAI, even on
a low-powered Raspberry Pi. I’ll introduce you to the OpenVINO toolset, the Open Model Zoo (where we’ll download
the face-detection-retail-0004 model), and show you how to generate the .blob file needed to run model inference on
your DepthAI board.

Note: Besides local model conversion (which is more time-consuming), you can also use Blobconverter web app or
blobconverter package.

Haven’t heard of OpenVINO or the Open Model Zoo? I’ll start with a quick introduction of why we need these tools.

4.3. AI / ML / NN 17

https://github.com/luxonis/depthai-experiments/tree/master/gen2-deeplabv3_depth
https://github.com/luxonis/depthai-experiments/tree/master/gen2-triangulation
https://github.com/luxonis/depthai-experiments/tree/master/gen2-triangulation
https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/face-detection-retail-0004

DepthAI Docs

What is OpenVINO?

Under-the-hood, DepthAI uses the Intel technology to perform high-speed model inference. However, you can’t just
dump your neural net into the chip and get high-performance for free. That’s where OpenVINO comes in. OpenVINO
is a free toolkit that converts a deep learning model into a format that runs on Intel Hardware. Once the model is
converted, it’s common to see Frames Per Second (FPS) improve by 25x or more. Are a couple of small steps worth a
25x FPS increase? Often, the answer is yes!

Check the OpenVINO toolkit website for installation instructions.

What is the Open Model Zoo?

In machine learning/AI the name for a collection of pre-trained models is called a “model zoo”. The Open Model Zoo
is a library of freely-available pre-trained models. The Open Model Zoo also contains scripts for downloading those
models into a compile-ready format to run on DepthAI.

DepthAI is able to run many of the object detection models from the Zoo. Several of those models are included in the
DepthAI Github repositoy.

Install OpenVINO

Note: DepthAI gets support for the new OpenVINO version within a few days of the release, so you should always
use the latest OpenVINO version.

You can download the OpenVINO toolkit installer from their download page, and we will use the latest version - which
is 2021.4 at the time of writing.

18 Chapter 4. Ecosystem

https://docs.openvinotoolkit.org/
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://github.com/opencv/open_model_zoo
https://github.com/luxonis/depthai/tree/master/resources/nn/
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit/download.html

DepthAI Docs

After downloading and extracting the compressed folder, we can run the installation:

~/Downloads/l_openvino_toolkit_p_2021.3.394$ sudo ./install_GUI.sh

All the components that we need will be installed by default. Our installation path will be ~/intel/
openvino_2021 (default location), and we will use this path below.

Download the face-detection-retail-0004 model

Now that we have OpenVINO installed, we can use the model downloader

cd ~/intel/openvino_2021/deployment_tools/tools/model_downloader
python3 -mpip install -r requirements.in
python3 downloader.py --name face-detection-retail-0004 --output_dir ~/

This will download model files to ~/intel/. Specifically, the model files we need are located at:

cd ~/intel/face-detection-retail-0004/FP16

We will move into this folder so we can later compile this model into the required .blob.

You’ll see two files within the directory:

$ ls -lh
total 1.3M

(continues on next page)

4.3. AI / ML / NN 19

DepthAI Docs

(continued from previous page)

-rw-r--r-- 1 root root 1.2M Jul 28 12:40 face-detection-retail-0004.bin
-rw-r--r-- 1 root root 100K Jul 28 12:40 face-detection-retail-0004.xml

The model is in the OpenVINO Intermediate Representation (IR) format:

• face-detection-retail-0004.xml - Describes the network topology

• face-detection-retail-0004.bin - Contains the weights and biases binary data.

This means we are ready to compile the model for the MyriadX!

Compile the model

The MyriadX chip used on our DepthAI board does not use the IR format files directly. Instead, we need to generate
face-detection-retail-0004.blob using compile_tool tool.

Activate OpenVINO environment

In order to use compile_tool tool, we need to activate our OpenVINO environment.

First, let’s find setupvars.sh file

find ~/intel/ -name "setupvars.sh"
/home/root/intel/openvino_2021.4.582/data_processing/dl_streamer/bin/setupvars.sh
/home/root/intel/openvino_2021.4.582/opencv/setupvars.sh
/home/root/intel/openvino_2021.4.582/bin/setupvars.sh

We’re interested in bin/setupvars.sh file, so let’s go ahead and source it to activate the environment:

source /home/root/intel/openvino_2021.4.582/bin/setupvars.sh
[setupvars.sh] OpenVINO environment initialized

If you see [setupvars.sh] OpenVINO environment initialized then your environment should be
initialized correctly

Locate compile_tool

Let’s find where compile_tool is located. In your terminal, run:

find ~/intel/ -iname compile_tool

You should see the output similar to this

find ~/intel/ -iname compile_tool
/home/root/intel/openvino_2021.4.582/deployment_tools/tools/compile_tool/compile_tool

Save this path as you will need it in the next step, when running compile_tool.

20 Chapter 4. Ecosystem

DepthAI Docs

Run compile_tool

From the ~/intel/face-detection-retail-0004/FP16we will now call the compile_tool to compile
the model into the face-detection-retail-0004.blob

~/intel/openvino_2021.4.582/deployment_tools/tools/compile_tool/compile_tool -m face-
→˓detection-retail-0004.xml -ip U8 -d MYRIAD -VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_
→˓CMX_SLICES 4

You should see:

Inference Engine:
IE version 2021.4.0
Build 2021.4.0-3839-cd81789d294-releases/2021/4

Network inputs:
data : U8 / NCHW

Network outputs:
detection_out : FP16 / NCHW

[Warning][VPU][Config] Deprecated option was used : VPU_MYRIAD_PLATFORM
Done. LoadNetwork time elapsed: 1760 ms

Where’s the blob file? It’s located in the current folder

/intel/face-detection-retail-0004/FP16$ ls -l
total 2.6M
-rw-rw-r-- 1 root root 1176544 jul 28 19:32 face-detection-retail-0004.bin
-rw-rw-r-- 1 root root 1344256 jul 28 19:51 face-detection-retail-0004.blob
-rw-rw-r-- 1 root root 106171 jul 28 19:32 face-detection-retail-0004.xml

Run and display the model output

With neural network .blob in place, we’re ready to roll! To verify that the model is running correctly, let’s modify a
bit the program we’ve created in Hello World tutorial

In particular, let’s change the setBlobPath invocation to load our model. Remember to replace the paths to
correct ones that you have!

- detection_nn.setBlobPath(str(blobconverter.from_zoo(name='mobilenet-ssd',
→˓shaves=6)))
+ detection_nn.setBlobPath("/path/to/face-detection-retail-0004.blob")

And that’s all!

You should see output annotated output similar to:

4.3. AI / ML / NN 21

https://docs.luxonis.com/projects/api/en/latest/tutorials/hello_world/

DepthAI Docs

Reviewing the flow

The flow we walked through works for other pre-trained object detection models in the Open Model Zoo:

1. Download the model:

python3 downloader.py --name face-detection-retail-0004 --output_dir ~/

2. Create the MyriadX blob file:

./compile_tool -m [INSERT PATH TO MODEL XML FILE] -ip U8 -d MYRIAD -VPU_
→˓NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4

Here are all supported compile_tool arguments.

3. Use this model in your script

You’re on your way! You can find the complete code for this tutorial on GitHub.

Note: You should also check out the Use a Pre-trained OpenVINO model tutorial, where this process is significaly
simplified.

To allow DepthAI to use your custom trained models, you need to convert them into a MyriadX blob file format - so
that they are optimized for the best inference on MyriadX VPU processor.

There are two conversion steps that have to be taken in order to obtain a blob file:

22 Chapter 4. Ecosystem

https://docs.openvinotoolkit.org/latest/openvino_inference_engine_tools_compile_tool_README.html#run_the_compile_tool
https://github.com/luxonis/depthai-tutorials/blob/master/2-face-detection-retail/face-detection-retail-0004.py

DepthAI Docs

• Use Model Optimizer to produce OpenVINO IR representation (where IR stands for Intermediate Represen-
tation)

• Use Compile Tool to compile IR representation model into VPU blob

Fig. 1: from OpenCV Courses site

Model Optimizer

OpenVINO’s Model optimizer converts the model from the original framework format into the OpenVINO’s Inter-
mediate Representation (IR) standard format (.bin and .xml). This format of the model can be deployed across
multiple Intel devices: CPU, GPU, iGPU, VPU (which we are interested in), and FPGA.

Example usage of Model Optimizer with online Blobconverter:

--data_type=FP16 --mean_values=[0,0,0] --scale_values=[255,255,255]

Example for local conversion:

mo --input_model path/to/model.onnx --data_type=FP16 --mean_values=[0,0,0] --scale_
→˓values=[255,255,255]

All arguments below are also documented on OpenVINO’s docs here.

FP16 Data Type

Since we are converting for VPU (which supports FP16), we need to use parameter --data_type=FP16. More
information here.

4.3. AI / ML / NN 23

https://courses.opencv.org/
https://docs.openvino.ai/2021.4/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_FP16_Compression.html#doxid-openvino-docs-m-o-d-g-f-p16-compression

DepthAI Docs

Mean and Scale parameters

OpenVINO’s documentation here. –mean_values and –scale_values parameters will normalize the input image to the
model: new_value = (byte - mean) / scale. By default, frames from ColorCamera/MonoCamera are in
U8 data type ([0,255]).

Models are usually trained with normalized frames [-1,1] or [0,1], so we need to normalize frames before running
the inference. One (not ideal) option is to create Custom model that normalizes frames before inferencing (example
here), but it’s better (more optimized) to do it in the model itself.

Common options:

• [0,1] values, mean=0 and scale=255 (([0,255] - 0) / 255 = [0,1])

• [-1,1] values, mean=127.5 and scale=127.5 (([0,255] - 127.5) / 127.5 = [-1,1])

• [-0.5,0.5] values, mean=127.5 and scale=255 (([0,255] - 127.5) / 255 = [-0.5,0.5])

Model layout parameter

OpenVINO’s documentation here. Model layout can be specified with --layout parameter. We use Planar / CHW
layout convention. A similar DepthAI error message will be shown if the image layout is not matching the model
layout:

[NeuralNetwork(0)] [warning] Input image (416x416) does not match NN (3x416)

Note that by default, ColorCamera node will output preview frames in Interleaved / HWC layout (as it’s native to
OpenCV), and can be changed to Planar layout via API:

import depthai as dai
pipeline = dai.Pipeline()
colorCam = pipeline.createColorCamera()
colorCam.setInterleaved(False) # False = Planar layout

Color order

OpenVINO’s documentation here. NN models can be trained on images that have either RGB or BGR color order.
You can change from one to another using --reverse_input_channels parameter. We use BGR color order.
For example, see Changing color order>.

Note that by default, ColorCamera node will output preview frames in BGR color order (as it’s native to OpenCV),
and can be changed to RGB color order via API:

import depthai as dai
pipeline = dai.Pipeline()
colorCam = pipeline.createColorCamera()
colorCam.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB) # RGB color order,
→˓BGR by default

24 Chapter 4. Ecosystem

https://docs.openvino.ai/2021.4/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html#when-to-specify-mean-and-scale-values
https://docs.luxonis.com/projects/api/en/latest/components/nodes/color_camera/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/mono_camera/
https://github.com/luxonis/depthai-experiments/blob/master/gen2-custom-models/generate_model/pytorch_normalize.py#L8-L11
https://github.com/luxonis/depthai-experiments/blob/master/gen2-custom-models/generate_model/pytorch_normalize.py#L8-L11
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html#when-to-specify-layout
https://docs.luxonis.com/projects/api/en/latest/components/nodes/color_camera/
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html#when-to-reverse-input-channels
https://docs.luxonis.com/projects/api/en/latest/components/nodes/color_camera/

DepthAI Docs

Compile Tool

After converting the model to OpenVINO’s IR format (.bin/.xml), we need to use OpenVINO’s Compile Tool to
compile the model in IR format into .blob file, which can be deployed to the device (tutorial here)

Input layer precision: RVC2 only supports FP16 precision, so -ip U8 will add conversion layer U8->FP16 on all
input layers of the model - which is what we usually want. In some cases (eg. when we aren’t dealing with frames),
we want to use FP16 precision directly, so we can use -ip FP16 (Cosine distance model example).

Shaves: RVC2 has a total has 16 SHAVE cores (see Hardware accelerators documentation). Compiling for more
SHAVEs can make the model perform faster, but the proportion of shave cores isn’t linear with performance. Firmware
will warn you about a possibly optimal number of shave cores, which is available_cores/2. As by default, each
model will run on 2 threads.

Converting and compiling models

There are a few options to perform these steps:

1. Using our online blobconverter app

2. Using our blobconverter library

3. Converting & Compiling locally

1. Using online blobconverter

You can visit our online Blobconverter app which allows you to convert and compile the NN model from TensorFlow,
Caffe, ONNX, OpenVINO IR, and OpenVINO Model Zoo.

2. Using blobconverter package

For automated usage of our blobconverter tool, we have released a blobconverter PyPi package, that allows converting
& compiling models both from the command line and from the Python script directly. Example usage below.

Install and usage instructions can be found here

import blobconverter

blob_path = blobconverter.from_onnx(
model="/path/to/model.onnx",
data_type="FP16",
shaves=5,

)

4.3. AI / ML / NN 25

https://docs.openvino.ai/2021.4/openvino_inference_engine_tools_compile_tool_README.html
https://github.com/luxonis/depthai-experiments/blob/master/gen2-custom-models/generate_model/pytorch_cos_dist.py#L56-L65
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2.html#hardware-blocks-and-accelerators
http://blobconverter.luxonis.com/
https://pypi.org/project/blobconverter/
https://github.com/luxonis/blobconverter/tree/master/cli

DepthAI Docs

3. Local compilation

If you want to perform model conversion and compilation locally, you can follow:

• OpenVINO official instructions

• OpenVINO Python notebooks

• Our local model compilation tutorial

• Custom model conversion & compilation notes

Troubleshooting

When converting your model to the OpenVINO format or compiling it to a .blob, you might come across an issue.
This usually means that a connection between two layers is not supported or that the layer is not supported.

For visualization of NN models we suggest using Netron app.

Supported layers

When converting your model to OpenVINO’s IR format (.bin and .xml), you have to check if the OpenVINO
supports layers that were used. Here are supported layers and their limitations for Caffee, MXNet, TensorFlow,
TensorFlow 2 Keras, Kaldi, and ONNX.

Unsupported layer type “layer_type”

When using compile_tool to compile from IR (.xml/.bin) into .blob, you might get an error like this:

Failed to compile layer "Resize_230": unsupported layer type "Interpolate"

This means that the layer type is not supported by the VPU (Intels Myriad X). You can find supported OpenVINO
layers by the VPU here, under the Supported Layers header, in the third column (VPU). Refer to official Intel’s
troubleshooting docs for more information.

26 Chapter 4. Ecosystem

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://github.com/openvinotoolkit/openvino_notebooks
https://docs.luxonis.com/projects/api/en/latest/tutorials/local_convert_openvino/
https://github.com/luxonis/depthai/blob/main/README.md#conversion-of-existing-trained-models-into-intel-movidius-binary-format
https://netron.app/
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#caffe-supported-layers
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#mxnet-supported-symbols
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#tensorflow-supported-operations
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#tensorflow-2-keras-supported-operations
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#kaldi-supported-layers
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html#onnx-supported-operators
https://docs.openvino.ai/2022.1/openvino_inference_engine_tools_compile_tool_README.html
https://docs.openvino.ai/2022.1/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html#supported-layers
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_VPU.html#troubleshooting
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_VPU.html#troubleshooting

DepthAI Docs

Incorrect data types

If the compiler returns something along the lines of “check error: input #0 has type S32, but one of [FP16] is
expected”, it means that you are using incorrect data types. In the case above, an INT32 layer is connected to FP16
directly. There should be a conversion in between these layers, and we can achieve that by using the OpenVINOs
Convert layer between these two layers. You can do that by editing your models .xml and adding the Convert layer.
You can find additional information on this discord thread.

4.3.2 Deploying Custom Models

This tutorial will review the process of deploying a custom trained (or pre-trained) model to the OAK camera. As
mentioned in details in Converting model to MyriadX blob tutorial, you first need to convert the model to OpenVINO’s
IR format (.xml/.bin) and then compile it to .blob in order to then deploy it to the OAK camera.

1. Face mask recognition model

For our first tutorial we will deploy the SBD_Mask classification model, as it already has pre-trained .onnx model in
the /models folder.

From the examples in the repo you can see that they are using CenterFace face detection model, and then SBD_Mask
classification model to recognize whether the person (more specifically the face image) is wearing a mask.

Converting to .blob

Since the .onnx model is already provided, we don’t need to export the trained model (to eg. frozen TF model). After
downloading the model, we can use blobconverter app to convert it to .blob. I will be using the latest version of
OpenVINO (2021.4 as of time of writing), and I can select ONNX Model as the source. After clicking the Continue
button, we can drag&drop the .onnx file to the Browse... button.

Before we click Convert, we should double-check the default values for Model Optimizer and Compile params.

4.3. AI / ML / NN 27

https://docs.openvinotoolkit.org/latest/openvino_docs_ops_type_Convert_1.html
https://docs.openvinotoolkit.org/latest/openvino_docs_ops_type_Convert_1.html
https://discord.com/channels/790680891252932659/799407361986658354/854501905799184414
https://github.com/sbdcv/sbd_mask
https://github.com/sbdcv/sbd_mask/tree/41c6730e6837f63c1285a0fb46f4a2143e02b7d2/model
https://github.com/sbdcv/sbd_mask/blob/41c6730e6837f63c1285a0fb46f4a2143e02b7d2/model/sbd_mask.onnx
http://blobconverter.luxonis.com

DepthAI Docs

Model optimizer parameters

Model Optimizer converts other model formats to OpenVINO’s IR format, which produces .xml/.bin files.

To decide Model Optimizer parameters, we could either read the repository to find out the required input values, or
read the code:

def classify(img_arr=None, thresh=0.5):
blob = cv2.dnn.blobFromImage(img_arr, scalefactor=1 / 255, size=(csize, csize),

→˓mean=(0, 0, 0),
swapRB=True, crop=False)

net.setInput(blob)

heatmap = net.forward(['349'])
match = m_func.log_softmax(torch.from_numpy(heatmap[0][0]), dim=0).data.numpy()
index = np.argmax(match)

return (0 if index > thresh else 1, match[0])

These few lines actually contain both logic for decoding (which we will use later) AND contain info about the required
input values - scalefactor=1 / 255 and mean=(0, 0, 0), so the pretrained model expects 0..1 input
values.

For Model Optimizer we will use the arguments below. See Model Optimizer docs here for more info.

--data_type=FP16 --mean_values=[0,0,0] --scale_values=[255,255,255]

Myriad X compile parameters

After converting the model to OpenVINO’s IR format (.bin/.xml), we need to use Compile Tool to compile the model
to .blob, so it can be deployed to the camera.

Compiling the model

Now that we have set arguments to the blobconverter, we can click Convert. This will upload the .onnx model to
the blobconverter server, run the Model optimizer and Compile tool, and then the blobconverter app will prompt us to
save the .blob file.

Fig. 2: Arguments to convert/compile the SBD Mask classification model

28 Chapter 4. Ecosystem

https://github.com/sbdcv/sbd_mask/blob/41c6730e6837f63c1285a0fb46f4a2143e02b7d2/deploy.py#L10-L19

DepthAI Docs

Deploying the model

Now that we have .blob, we can start designing depthai pipeline. This will be a standard 2-stage pipeline:

1. Run 1st NN model; object detection model (face detection in our case)

2. Crop the high-resolution image to only get the image of the object (face)

3. Use cropped image to run the 2nd NN model; image recognition (SBD Mask classification model)

We already have quite a few 2-stage pipeline demos:

• Age-gender recognition demo - First detect faces, then run age-gender recognition model

• Emotion recognition demo - First detect faces, then run emotion recognition model

• Face recognition demo - First detect faces, then run face recognition model (it also runs head pose estimation in
between, documented here)

• Person re-identification demo - First detect people, then run person re-id model

We will start with the age-gender recognition demo and simply replace the recognition model, so instead of running
the age-gender model, we will run the SBD mask model.

Face detection

The age-gender demo uses face-detection-retail-0004 model, which is great in terms of accuracy/performance, so we
will leave this part of the code: (lines 0-64)

Input shape

Age-gender uses age-gender-recognition-retail-0013 recognition model, which requires 62x62 frames. Our SBD-
Mask model requires 224x224 as the input frame. You can see this when opening .xml/.onnx with the Netron app.

Fig. 3: Input shape expected by the SBD Mask model

4.3. AI / ML / NN 29

https://github.com/luxonis/depthai-experiments/tree/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-age-gender
https://github.com/luxonis/depthai-experiments/tree/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-emotion-recognition
https://github.com/luxonis/depthai-experiments/tree/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-face-recognition
https://github.com/luxonis/depthai-experiments/tree/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-face-recognition#how-it-works
https://github.com/luxonis/depthai-experiments/tree/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-pedestrian-reidentification
https://docs.openvino.ai/2021.4/omz_models_model_face_detection_retail_0004.html
https://github.com/luxonis/depthai-experiments/blob/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-age-gender/main.py#L1-L64
https://docs.openvino.ai/latest/omz_models_model_age_gender_recognition_retail_0013.html
https://netron.app/

DepthAI Docs

recognition_manip ImageManip node is responsible for cropping high-resolution frame to frames of faces at
the required shape. We will need to change 62x62 to 224x224 shape in Script node (line 116) and as the ImageManip
initial configuration (line 124).

Inside Script node
for i, det in enumerate(face_dets.detections):

cfg = ImageManipConfig()
correct_bb(det)
cfg.setCropRect(det.xmin, det.ymin, det.xmax, det.ymax)
node.warn(f"Sending {i + 1}. det. Seq {seq}. Det {det.xmin}, {det.

→˓ymin}, {det.xmax}, {det.ymax}")
- cfg.setResize(62, 62)
+ cfg.setResize(224, 224)

cfg.setKeepAspectRatio(False)
node.io['manip_cfg'].send(cfg)
node.io['manip_img'].send(img)

""")
cam.preview.link(image_manip_script.inputs['preview'])

recognition_manip = pipeline.create(dai.node.ImageManip)
- recognition_manip.initialConfig.setResize(62, 62)
+ recognition_manip.initialConfig.setResize(224, 224)

recognition_manip.setWaitForConfigInput(True)
image_manip_script.outputs['manip_cfg'].link(recognition_manip.inputConfig)
image_manip_script.outputs['manip_img'].link(recognition_manip.inputImage)

The pipeline will now send 224x224 cropped frames of all detected faces to the recognition NN.

Change the model

Now that recognition_nn will get 224x224 frames, we have to change the recognition model to the SBD-Mask
model (line 132). I have placed my sbd_mask.blob in the same folder as the main.py script.

Second stange recognition NN
print("Creating recognition Neural Network...")
recognition_nn = pipeline.create(dai.node.NeuralNetwork)

- recognition_nn.setBlobPath(blobconverter.from_zoo(name="age-gender-recognition-
→˓retail-0013", shaves=6))
+ recognition_nn.setBlobPath("sbd_mask.blob") # Path to the .blob

recognition_manip.out.link(recognition_nn.input)

Change decoding

The pipeline will stream SBD-Mask recognition results to the host. MultiMsgSync.py script will sync these
recognition results with high-resolution color frames and object detection results (to display the bounding box around
faces).

As mentioned above, SBD-Mask repository contained decoding logic as well, so we can just use that. First we need to
run log_softmax function and then np.argmax. I will be using scipy’s log_softmax function for simplicity. So
we need to import from scipy.special import log_softmax in the script.

bbox = frame_norm(frame, (detection.xmin, detection.ymin, detection.xmax,
→˓detection.ymax))

(continues on next page)

30 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments/blob/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-age-gender/main.py#L116
https://github.com/luxonis/depthai-experiments/blob/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-age-gender/main.py#L124
https://github.com/luxonis/depthai-experiments/blob/769029ea4e215d03f741bcf085d1bb6c94009856/gen2-age-gender/main.py#L132
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html

DepthAI Docs

(continued from previous page)

Decoding of recognition results
- rec = recognitions[i]
- age = int(float(np.squeeze(np.array(rec.getLayerFp16('age_conv3')))) * 100)
- gender = np.squeeze(np.array(rec.getLayerFp16('prob')))
- gender_str = "female" if gender[0] > gender[1] else "male"

+ rec = recognitions[i].getFirstLayerFp16() # Get NN results. Model only has 1
→˓output layer
+ index = np.argmax(log_softmax(rec))
+ # Now that we have the classification result we can show it to the user
+ text = "No Mask"
+ color = (0,0,255) # Red
+ if index == 1:
+ text = "Mask"
+ color = (0,255,0)

cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
y = (bbox[1] + bbox[3]) // 2

Visualizing results

From the decoding step we got the text (“Mask”/”No Mask”) which we want to display to the user and color (green/red)
which we will use to color the rectangle around the detected face.

text = "No Mask"
color = (0,0,255) # Red
if index == 1:

text = "Mask"
color = (0,255,0)

- cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (10, 245, 10), 2)
+ cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 3) # Colorize
→˓bounding box and make it thicker

y = (bbox[1] + bbox[3]) // 2
- cv2.putText(frame, str(age), (bbox[0], y), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0,
→˓0), 8)
- cv2.putText(frame, str(age), (bbox[0], y), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255,
→˓255, 255), 2)
- cv2.putText(frame, gender_str, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5,
→˓(0, 0, 0), 8)
- cv2.putText(frame, gender_str, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5,
→˓(255, 255, 255), 2)
+ cv2.putText(frame, text, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (0, 0,
→˓0), 8) # Display Mask/No Mask text
+ cv2.putText(frame, text, (bbox[0], y + 30), cv2.FONT_HERSHEY_TRIPLEX, 1.5, (255,
→˓255, 255), 2)

if stereo:
You could also get detection.spatialCoordinates.x and detection.

→˓spatialCoordinates.y coordinates
coords = "Z: {:.2f} m".format(detection.spatialCoordinates.z/1000)
cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1, (0,

→˓ 0, 0), 8)
cv2.putText(frame, coords, (bbox[0], y + 60), cv2.FONT_HERSHEY_TRIPLEX, 1,

→˓(255, 255, 255), 2)

4.3. AI / ML / NN 31

DepthAI Docs

Changing color order

I noticed that the end result wasn’t very accurate. This can be a result of variety of things (model is just inaccurate,
model lost accuracy due to quantization (INT32->FP16), incorrect mean/scale values, etc.), but I like to first check
color order. ColorCamera node will output BGR color order by default (on preview output). The model’s accuracy
won’t be best if you send BGR frames to it and it was trained on RGB frames - which was the issue here.

You can change preview’s color order by adding this line:

print("Creating Color Camera...")
cam = pipeline.create(dai.node.ColorCamera)
cam.setPreviewSize(1080, 1080)
cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
cam.setInterleaved(False)
cam.setBoardSocket(dai.CameraBoardSocket.RGB)

+ cam.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)

Note that the face detection model’s accuracy will decrease due to this change, as it expects BGR and will get RGB.
The correct way would be to specify –reverse_input_channels (See Color order documentation) argument using the
Model Optimizer, which is what was used to generate xml/bin files that were uploaded to our DepthAI Model Zoo.

mo --input_model sbd_mask.onnx --data_type=FP16 --mean_values=[0,0,0] --scale_
→˓values=[255,255,255] --reverse_input_channels

End result

You can view all changes we have made on Github here.

You might have noticed that face detection isn’t perfect when I have a mask on the face. That’s probably due to
RGB/BGR issue mentioned above. It’s also likely the accuracy drops because the face-detection-retail-0004 model
wasn’t trained on images that had faces covered with masks. The lighting on my face also wasn’t the best. We might
get better results if we used ObjectTracker node to track faces, but that’s out of the scope of this tutorial.

2. QR code detector

This tutorial will focus around deploying the WeChat QR code detector. I found this model while going through
OpenCV Model Zoo. There are 2 models in this folder:

• detect_2021nov - QR code detection model

• sr_2021nov - QR code super resolution (224x224 -> 447x447)

We will be focusing on the first one, the QR code detection model.

Converting QR code detector to OpenVINO

Compared to the previous model (SBD-Mask), I couldn’t find relevant information about mean/scale values for this
model. For more information on mean/scale values, see the 1. tutorial. In such cases, I usually do the following:

1. Convert the model to OpenVINO (using model optimizer) without specifying mean/scale values

2. Use OpenVINO’s Inference Engine to run IR model (.bin/.xml)

3. After getting the decoding correct, I try out different mean/scale values until I fugire out the correct combination

32 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-model-zoo/tree/main/models/sbd_mask_classification_224x224
https://github.com/luxonis/depthai-experiments/commit/b72261dbe96ff56f73333b099e6274bd22d1fea9
https://docs.openvino.ai/2021.4/omz_models_model_face_detection_retail_0004.html
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
https://github.com/opencv/opencv_zoo/tree/4fb591053ba1201c07c68929cc324787d5afaa6c/models/qrcode_wechatqrcode
https://github.com/opencv/opencv_zoo
https://docs.openvino.ai/latest/openvino_docs_OV_UG_Integrate_OV_with_your_application.html

DepthAI Docs

4. After getting the decoding and mean/scale values right, I convert the model to blob and develop a DepthAI
pipeline for it

So let’s first convert the model to IR format (xml/bin) using OpenVINO:

mo --input_model detect_2021nov.caffemodel

Now that we have xml/bin, we can also look at the input/output shape of the model using Netron. Input shape is
1x384x384 (so grayscale frame, not color) and output shape is 100x7.

Using Inference Engine (IE) to evaluate the model

The code below was modified from our depthai-inference-engine. I personally like to evaluate the inference on the
CPU first and get these values correct:

• Mean/Scale values,

• Color order,

• Model layout

So I can estimate accuracy degradation due to quantization when going from CPU (INT32) to Myriad X (FP16).

from openvino.inference_engine import IECore
import cv2
import numpy as np

def crop_to_square(frame):
height = frame.shape[0]
width = frame.shape[1]
delta = int((width-height) / 2)
return frame[0:height, delta:width-delta]

model_xml = 'detect_2021nov.xml'
model_bin = "detect_2021nov.bin"
shape = (384, 384) # We got this value from Netron

ie = IECore()
print("Available devices:", ie.available_devices)
net = ie.read_network(model=model_xml, weights=model_bin)
input_blob = next(iter(net.input_info))
You can select device_name="MYRIAD" to run on Myriad X VPU
exec_net = ie.load_network(network=net, device_name='CPU')

MEAN = 127.5 # Also try: 127.5
SCALE = 255 # Also try: 0, 127.5

Frames from webcam. Could take frames from OAK (running UVC pipeline)
or from video file.
cam = cv2.VideoCapture(0)
cam.set(cv2.CAP_PROP_FPS, 30)
while True:

ok, og_image = cam.read()
if not ok: continue

og_img = crop_to_square(og_image) # Crop to 1:1 aspect ratio
og_img = cv2.resize(og_img, shape) # Downscale to 384x384
image = cv2.cvtColor(og_img, cv2.COLOR_BGR2GRAY) # To grayscale

(continues on next page)

4.3. AI / ML / NN 33

https://pypi.org/project/openvino-dev/
https://netron.app/
https://github.com/luxonis/depthai-experiments/tree/master/depthai-inference-engine
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html#when-to-specify-mean-and-scale-values
https://docs.openvino.ai/2022.1/openvino_docs_MO_DG_Additional_Optimization_Use_Cases.html#when-to-reverse-input-channels
https://docs.openvino.ai/2022.1/openvino_docs_OV_UG_Layout_Overview.html#doxid-openvino-docs-o-v-u-g-layout-overview

DepthAI Docs

(continued from previous page)

image = (image - MEAN) / SCALE # Normalize the input frame
image = image.astype(np.int32) # Change type

output = exec_net.infer(inputs={input_blob: image}) # Do the NN inference
print(output) # Print the output

cv2.imshow('USB Camera', og_img)
if cv2.waitKey(1) == ord('q'): break

Decoding QR code detector

The script above will print full NN output. If you have a QR code in front of the camera, the output array should
contain some values other than 0. The (100,7) output is the standard object detection output which contains:

batch_num = result[0] # Always 0, 1 frame at a time
label = result[1] # Always 1, as we only detect one object (QR code)
confidence = result[2]
bounding_box = result[3:7]

Initially, I thought we would need to perform NMS algorithm on the host, but after checking the model, I saw it has
the DetectionOutput layer at the end. This layer performs NMS in the NN, so it’s done on the camera itself. When
creating a pipeline with the DepthAI we will also be able to use MobileNetDetectionNetwork node, as it was designed
to decode these standard SSD detection results.

Normalize the bounding box to frame resolution.
For example, [0.5, 0.5, 1, 1] bounding box on 300x300 frame
should return [150, 150, 300, 300]
def frame_norm(frame, bbox):

bbox[bbox < 0] = 0
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)

...

Do the NN inference
output = exec_net.infer(inputs={input_blob: image})
print(output) # Print the output

results = output['detection_output'].reshape(100, 7)
for det in results:

conf = det[2]
bb = det[3:]
bbox = frame_norm(og_img, bb)
cv2.rectangle(og_img, (bbox[0], bbox[1]) , (bbox[2], bbox[3]), (255, 127, 0), 3)

cv2.imshow('USB Camera', og_img)
if cv2.waitKey(1) == ord('q'): break

After trying a few MEAN/SCALE values, I found that MEAN=0 and SCALE=255 works the best. We don’t need to
worry about color order as the model requires grayscale images.

34 Chapter 4. Ecosystem

https://docs.openvino.ai/2022.1/openvino_docs_ops_detection_DetectionOutput_1.html
https://docs.luxonis.com/projects/api/en/latest/components/nodes/mobilenet_detection_network/

DepthAI Docs

Fig. 4: NMS layer in the model

4.3. AI / ML / NN 35

DepthAI Docs

Fig. 5: Success! Light blue bounding box around the QR code!

Testing accuracy degradation due to FP16 quantization

Now let’s try the model with FP16 precision instead of INT32. If you connect an OAK camera to your computer you
can select MYRIAD as the inference device instead of CPU. If the model works correctly with IE on Myriad X, it
will work with DepthAI as well.

- exec_net = ie.load_network(network=net, device_name='CPU')
+ exec_net = ie.load_network(network=net, device_name='MYRIAD')

...
image = cv2.cvtColor(og_img, cv2.COLOR_BGR2GRAY) # To grayscale
image = (image - MEAN) / SCALE # Normalize the input frame

- image = image.astype(np.int32) # Change type
+ image = image.astype(np.float16) # Change type

output = exec_net.infer(inputs={input_blob: image}) # Do the NN inference

I haven’t noticed any accuracy degradation loss, so we can use Model Optimizer and proceed with correct arguments
this time. We will specify scale value 255 and FP16 datatype.

mo --input_model detect_2021nov.caffemodel --scale 255 --data_type FP16

36 Chapter 4. Ecosystem

DepthAI Docs

Integrating QR code detector into DepthAI

We now have our normalized model in IR. I will use blobconverter app to convert it to .blob, which is required by
the DepthAI.

As mentioned above, the model outputs the standard SSD detection results, so we can use
MobileNetDetectionNetwork node. I will start with Mono & MobilenetSSD example code and only
change blob path, label map, and frame shape.

import cv2
import depthai as dai
import numpy as np

nnPath = "detect_2021nov.blob" # Change blob path
labelMap = ["background", "QR-Code"] # Change labelMap

Create pipeline
pipeline = dai.Pipeline()

Define sources and outputs
monoRight = pipeline.create(dai.node.MonoCamera)
manip = pipeline.create(dai.node.ImageManip)
nn = pipeline.create(dai.node.MobileNetDetectionNetwork)
manipOut = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)

manipOut.setStreamName("right")
nnOut.setStreamName("nn")

Properties
monoRight.setBoardSocket(dai.CameraBoardSocket.RIGHT)
monoRight.setResolution(dai.MonoCameraProperties.SensorResolution.THE_720_P)

manip.initialConfig.setResize(384, 384) # Input frame shape
manip.initialConfig.setFrameType(dai.ImgFrame.Type.GRAY8) # Model expects Grayscale
→˓image

nn.setConfidenceThreshold(0.5)
nn.setBlobPath(nnPath)
nn.input.setBlocking(False)

monoRight.out.link(manip.inputImage)
manip.out.link(nn.input)
manip.out.link(manipOut.input)

(continues on next page)

4.3. AI / ML / NN 37

blobconverter.luxonis.com
https://docs.luxonis.com/projects/api/en/latest/samples/MobileNet/mono_mobilenet/#mono-mobilenetssd

DepthAI Docs

(continued from previous page)

nn.out.link(nnOut.input)

with dai.Device(pipeline) as device:

qRight = device.getOutputQueue("right", maxSize=4, blocking=False)
qDet = device.getOutputQueue("nn", maxSize=4, blocking=False)

frame = None
detections = []

def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)

def displayFrame(name, frame):
color = (255, 255, 0)
for detection in detections:

bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax,
→˓detection.ymax))

cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] +
→˓20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)

cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10,
→˓bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, color)

cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
cv2.imshow(name, frame)

while True:
frame = qRight.get().getCvFrame()
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR) # For colored visualization
detections = inDet = qDet.get().detections
displayFrame("right", frame)

if cv2.waitKey(1) == ord('q'):
break

QR Code end result

This is the end result of the script above. You can see that the mono camera sensor on OAK cameras performs
much better in low-light environment compared to my laptop camera (screenshot above). I uploaded this demo to
depthai-experiments/gen2-qr-code-scanner where I have also added blobconvewrter and displaying NN results on
high-resolution frames.

38 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments/tree/master/gen2-qr-code-scanner

DepthAI Docs

Fig. 6: On-device decoding using the script above!

4.3.3 Use a Pre-trained OpenVINO model

In this tutorial, you’ll learn how to use a pre-trained face detection model to detect faces in real-time, even on a
low-powered Raspberry Pi.

4.3. AI / ML / NN 39

DepthAI Docs

If you would like to learn more about OpenVINO, Open Model Zoo and how to locally convert OpenVINO model
into .blob, check out our Local OpenVINO Model Conversion

Run DepthAI Default Model

The depthai_demo.py file can be modified directly to you do your bidding, or you can simply pass arguments to
it for which models you want to run.

For simplicity we will do the latter, simply passing arguments so that DepthAI runs the
face-detection-retail-0004 instead of the model run by default.

Before switching to using the face-detection-retail-0004 let’s take a baby step and give these command
line options a spin. In this case we’ll just pass in the same neural network that default runs when running python3
depthai_demo.py, just to make sure we’re doing it right:

python3 depthai_demo.py -dd

This will then run the a typical demo MobileNetv2 SSD object detector trained on the PASCAL 2007 VOC classes,
which are:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: airplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, TV/monitor

40 Chapter 4. Ecosystem

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

DepthAI Docs

I ran this on my laptop with an OAK-D sitting on my desk pointing upwards randomly - and it makes out the corner
of my laptop screen and correctly identifies it as tvmonitor:

Run model

Now that we’ve got this verified, let’s move on to trying out other models, starting with
face-detection-retail-0004.

To use this model, simply specify the name of the model to be run with the -cnn flag, as below:

python3 depthai_demo.py -dd -cnn face-detection-retail-0004

This will download the compiled face-detection-retail-0004 NN model and use it to run inference (detect
faces) on color frames:

It’s that easy. Substitute your face for mine, of course.

And if you’d like to try other models, just peruse here and run them by their name, just like above.

Now take some time to play around with the model. You can for example check how far away the model can detect
your face:

4.3. AI / ML / NN 41

https://github.com/luxonis/depthai/tree/main/resources/nn

DepthAI Docs

In the latter image you can see that I’m quite back-lit, which is one of the main challenges in face detection (and other
feature detection). In this case, it’s likely limiting the maximum range for which a face can be detected. From the
testing above, for a confidence threshold of 50%, this range appears to be about 20 feet. You could get longer range out
of the same model by reducing the model confidence threshold (by changing from 0.5 here) at the cost of increased
probability of false positives.

Another limiting factor is that this is a relatively low-resolution model (300x300 pixels), so faces get fairly small fairly
fast at a distance. So let’s try another face detection model that uses a higher resolution.

Trying Other Models

The flow we walked through works for other pre-trained models in our repository (here), which includes:

• People semantic segmentation (deeplabv3p_person)

• Face detection (ADAS) (face-detection-adas-0001)

• Face detection (retail, the one we used) (face-detection-retail-0004)

• Mobilenet general object detection (default model) (mobilenet-ssd)

• Pose estimation (openpose2)

• Pedestrian detection (ADAS) (pedestrian-detection-adas-0002)

• Person detection (retail) (person-detection-retail-0013)

• Person, Vehicle and Bike Detection (person-vehicle-bike-detection-crossroad-1016)

• tiny Yolo - general object detection (tiny-yolo-v3)

• Vehicle detection for driver-assistance (vehicle-detection-adas-0002)

• Vehicle and license plate detection (vehicle-license-plate-detection-barrier-0106)

• Yolo - general object detection (yolo-v3)

You can simply specify any of these models after the -cnn argument.

Let’s try out face-detection-adas-0001, which is intended for detecting faces inside the cabin of a vehicle.
(ADAS stands for Advanced Driver-Assistance Systems)

42 Chapter 4. Ecosystem

https://github.com/luxonis/depthai/blob/main/resources/nn/face-detection-retail-0004/face-detection-retail-0004.json#L6
https://github.com/luxonis/depthai/tree/main/resources/nn

DepthAI Docs

python3 depthai_demo.py -dd -cnn face-detection-adas-0001

So this model actually has a shorter detection distance than the smaller model despite having a higher resolution.
Why? Likely because it was intentionally trained to detect only close-in faces since it’s intended to be used in the
cabin of a vehicle. (You wouldn’t want to be detecting the faces in cars passing by, for example.)

Spatial AI - Augmenting the Model with 3D Position

So by default DepthAI is set to return the full 3D position. So in the command above, we actually specify for it to not
be calculated with -dd (or --disableDepth).

So let’s run that same command, but with that line omitted, such that 3D results are returned (and displayed):

python3 depthai_demo.py -cnn face-detection-retail-0004

4.3. AI / ML / NN 43

DepthAI Docs

And there you find the 3D position of my face!

You can then choose other models and get real-time 3D position for the class of interest.

4.3.4 Custom training

Overview

On our Github repo depthai-ml-training we provide several ML training notebooks trained on various data sets. You
can run these notebooks on Google Colab - they provide free CPU/GPU instances, so great for prototyping and even
simple production models.

We currently have these ML training tutorials:

• Tutorial - SSD MobileNetv2 training

• Tutorial - SSD MobileNetv2 training with custom data

• Tutorial - YOLOv4-tiny based Mask Detector

• Tutorial - YOLOv3-tiny based Mask Detector

• Tutorial - DeepLabV3+ MNV2 semantic segmetnation

• Tool - Google Drive image batch resizer

The Tutorials

The tutorial notebook Easy_Object_Detection_With_Custom_Data_Demo_Training.ipynb shows how to quickly train
an object detector based on the MobileNet SSDv2 network.

Optionally, see our documentation around this module (here) for of a guide/walk-through on how to use this notebook.
Also, feel free to jump right into the Notebook, with some experimentation it’s relatively straightforward to get a
model trained.

After training is complete, it also converts the model to a .blob file that runs on our DepthAI platform and modules.
First the model is converted to a format usable by OpenVINO called Intermediate Representation, or IR. The IR model

44 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-ml-training
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_Object_Detection_Demo_Training.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_Object_Detection_With_Custom_Data_Demo_Training.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_TinyYOLOv4_Object_Detector_Training_on_Custom_Data.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_TinyYolov3_Object_Detector_Training_on_Custom_Data.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/DeepLabV3plus_MNV2.ipynb
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/GDrive-Resize.ipynb
https://docs.luxonis.com/tutorials/object_det_mnssv2_training/

DepthAI Docs

is then compiled to a .blob file using a server we set up for that purpose. (The IR model can also be converted locally
to a blob.)

And that’s it, in less than a couple of hours a fairly advanced proof of concept object detector can run on DepthAI
to detect objects of your choice and their associated spatial information (i.e. X, Y, Z coordinates). For example this
notebook was used to train DepthAI to locate strawberries in 3D space, see below:

The Medical Mask Detection Demo Training.ipynb training notebook shows another example of a more complex object
detector. The training data set consists of people wearing or not wearing masks for viral protection. There are almost
700 pictures with approximately 3600 bounding box annotations. The images are complex: they vary quite a lot in
scale and composition. Nonetheless, the object detector does quite a good job with this relatively small data set for
such a task. Again, training takes around 2 hours. Depending on which GPU the Colab lottery assigns to the notebook
instance, training 10k steps can take 2.5 hours or 1.5 hours. Either way, a short period for such a good quality proof of
concept for such a difficult task. We then performed the steps above for converting to blob and then running it on our
DepthAI module.

Supporting Notebooks

This notebook operates on your set of images in Google Drive to resize them to the format needed by the training
notebooks.

OAK cameras can run any AI model, even custom architectured/built ones. You can even run multiple AI models at
the same time, either in parallel or series (a demo here).

Subpages:

• Converting model to MyriadX blob tutorial showcases model conversion and compilation steps to .blob format
so you can run the model on the device.

4.3. AI / ML / NN 45

https://github.com/luxonis/depthai#conversion-of-existing-trained-models-into-intel-movidius-binary-format
https://github.com/luxonis/depthai#conversion-of-existing-trained-models-into-intel-movidius-binary-format
https://www.youtube.com/watch?v=Okjh2OCP-o8&
https://docs.luxonis.com/projects/hardware/en/latest/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-gaze-estimation#gen2-gaze-estimation

DepthAI Docs

• Deploying Custom Models provides step-by-step tutorial on how to convert, compile and deploy the model to
OAK device

• Use one of 250+ pre-trained models; either from OpenVINO Model Zoo or DepthAI Model Zoo

4.3.5 AI vision tasks

We have open-source examples and demos for many different AI vision tasks, such as:

• Object detection models provide bounding box, confidence, and label of all detected objects. Demos: Mo-
bileNet, Yolo, EfficientDet, Palm detection.

• Landmark detection models provide landmarks/keypoints of an object. Demos: Human pose, hand landmarks,
and facial landmarks.

• Semantic segmentation models provide label/class for each pixel. Demos: Person segmentation, multiclass
segmentation, road segmentation.

• Classification models provide classification label and confidence in that label. Demos: EfficientNet, Tensorflow
classification, fire classification, emotions classification.

• Recognition models provide byte array that can be used for recognition or recognized feature itself. Demos:
Face recognition, person identification, OCR, license plate recognition.

There are also many other AI vision tasks that don’t fall in any of the categories above, like crowd counting, monocular
depth estimation, gaze estimation, or age/gender estimation.

All of the demos above run on color/grayscale frames. Many of these vision tasks can be fused with the depth
perception (on the OAK camera itself), which unlocks the power of Spatial AI.

4.3.6 Model Performance

AI model performance depends on the accelerator that’s on the OAK device. For current devices that use RVC2 you
can find the performance results here.

4.4 Depth perception

DepthAI platform supports different ways of perceiving depth:

1. Passive stereo depth perception - Used by non-Pro version of OAK-D cameras

2. Active stereo depth perception - Used by Pro version of OAK-D cameras

3. Time-of-Flight depth perception - Used by OAK-pToF

4.4.1 Passive stereo depth perception

Passive stereo works a lot like our eyes. Our brains (subconsciously) estimate the depth of objects and scenes based
on the difference of what our left eye sees versus what our right eye sees. On OAK-D cameras, it’s exactly the same;
we have a stereo camera pair - left and right monocular cameras - and the VPU (brains of the OAK cameras) does the
disparity matching to estimate the depth of objects and scenes.

The disparity is the distance (in pixels) between the same point in the left and right image of the stereo pair camera.
A great demo of disparity is below - the disparity is visualized with a red line between points/features - which in this
case are facial landmarks (eyes, nose, mouth).

46 Chapter 4. Ecosystem

https://github.com/openvinotoolkit/open_model_zoo
https://github.com/luxonis/depthai-model-zoo
https://docs.luxonis.com/projects/api/en/latest/samples/MobileNet/rgb_mobilenet/#rgb-mobilenetssd
https://docs.luxonis.com/projects/api/en/latest/samples/MobileNet/rgb_mobilenet/#rgb-mobilenetssd
https://docs.luxonis.com/projects/api/en/latest/samples/Yolo/tiny_yolo/#rgb-tiny-yolo
https://github.com/luxonis/depthai-experiments/tree/master/gen2-efficientDet
https://github.com/luxonis/depthai-experiments/tree/master/gen2-palm-detection
https://github.com/geaxgx/depthai_blazepose#blazepose-tracking-with-depthai
https://github.com/geaxgx/depthai_hand_tracker#hand-tracking-with-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-facemesh#gen2-facial-landmarks-on-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-deeplabv3_depth
https://github.com/luxonis/depthai-experiments/tree/master/gen2-deeplabv3_multiclass#gen2-deeplabv3-multiclass-on-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-deeplabv3_multiclass#gen2-deeplabv3-multiclass-on-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-road-segmentation#gen2-road-segmentation-on-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-efficientnet-classification#efficientnet-b0
https://github.com/luxonis/depthai-experiments/tree/master/gen2-tf-image-classification#demo
https://github.com/luxonis/depthai-experiments/tree/master/gen2-tf-image-classification#demo
https://github.com/luxonis/depthai-experiments/tree/master/gen2-fire-detection
https://github.com/luxonis/depthai-experiments/tree/master/gen2-emotion-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-face-recognition#demo
https://github.com/luxonis/depthai-experiments/tree/master/gen2-pedestrian-reidentification
https://github.com/luxonis/depthai-experiments/tree/master/gen2-ocr#how-to-run
https://github.com/luxonis/depthai-experiments/tree/master/gen2-license-plate-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-crowdcounting#gen2-crowd-counting-with-density-maps-on-depthai
https://github.com/luxonis/depthai-experiments/tree/master/gen2-depth-mbnv2
https://github.com/luxonis/depthai-experiments/tree/master/gen2-depth-mbnv2
https://github.com/luxonis/depthai-experiments/tree/master/gen2-gaze-estimation
https://github.com/luxonis/depthai-experiments/tree/master/gen2-age-gender
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2.html#rvc2-nn-performance
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s2.html#pro-version
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM0255.html

DepthAI Docs

OAK-D camera does that for every pixel in the mono frame - it goes through pixels on the first mono frame, finds
the same point/feature on the second mono frame, and assigns a disparity value (in pixels) with some confidence for
every pixel. This all happens inside the StereoDepth node. The depth map is calculated from the disparity map (on the
camera) using this formula.

Disparity matching won’t work well with blank, featureless surfaces (like walls or ceilings) when using passive
stereo depth perception. That’s because disparity matching will have a hard time matching points/features from
left/right images - as there are no distinctive points/features in either frame. That’s where active stereo depth perception
is needed.

Passive stereo accuracy/smoothness depends on:

1. Lighting/Texture. Stereo depth depends on feature matching, and in a low light environment, features aren’t as
visible. As mentioned in the paragraph above, featureless surfaces (like walls) aren’t suited for passive stereo
depth perception. Active stereo resolves both texture and lighting requirements.

2. Calibration. Factory calibration should be optimal.

3. Postprocessing filters, documentation here (under Depth Filters). Additional filtering can be performed on the
host-side as well, eg. WLS.

4.4.2 Active stereo depth perception

On our OAK Pro cameras, we use conventional active stereo vision (ASV). A dot projector is used to project many
small dots in front of the device, which helps with disparity matching, especially for low-visual-interest surfaces (blank
surfaces with little to no texture), such as a wall or ceiling.

The stereo matching process is performed exactly the same way as with passive stereo perception, the dots only help
with the accuracy.

4.4. Depth perception 47

https://github.com/luxonis/depthai-experiments/tree/master/gen2-triangulation
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#calculate-depth-using-disparity-map
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#currently-configurable-blocks
https://github.com/luxonis/depthai-experiments/tree/master/gen2-wls-filter
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s2.html#pro-version
https://en.wikipedia.org/wiki/Computer_stereo_vision#Conventional_active_stereo_vision_(ASV)

DepthAI Docs

Here you can see passive and active stereo perception when the OAK camera is faced against a wall. If you look
closely at the mono image (bottom left), you can see many small dots being projected onto the wall.

4.4.3 Time-of-Flight depth perception

Stereo perception has its pros and cons. It’s cheap, can perceive depth at greater distances, and has a high resolution.
On the other hand, it’s not as accurate. So for high-accuracy applications, Time-of-Flight (ToF) approach is suggested,
as it can provide sub-centimeter depth accuracy.

We have built a ToF FFC module that can be used with OAK-FFC and in the future, we will create a standalone camera
with ToF sensor onboard.

On the gif above you can see high accuracy (especially at low FPS) point-cloud that was produced using a ToF FFC
module and a color camera. ToF resolution here is 244x172.

4.5 Computer Vision

4.5.1 Run your own CV functions on-device

As mentioned in On-device programming, you can create custom CV models with your favorite NN library, convert
& compile it into the .blob and run it on the device. This tutorial will cover how to do just that.

If you are interested in training & deploying your own AI models, refer to Custom training.

Demos:

• Frame concatenation - using PyTorch

• Laplacian edge detection - using Kornia

• Frame blurring - using Kornia

• Tutorial on running custom models on OAK by Rahul Ravikumar

• Harris corner detection in PyTorch by Kunal Tyagi

Create a custom model with PyTorch

TL;DR if you are interested in implementation code, it’s here.

1. Create PyTorch NN module

We first need to create a Python class that extends PyTorch’s nn.Module. We can then put our NN
logic into the forward function of the created class. In the example of frame concatenation, we can
use torch.cat function to concatenate multiple frames:

class CatImgs(nn.Module):
def forward(self, img1, img2, img3):

return torch.cat((img1, img2, img3), 3)

For a more complex module, please refer to Harris corner detection in PyTorch demo by Kunal Tyagi.

Keep in mind that VPU supports only FP16, which means that max value is 65504. When multiply-
ing a few values you can quickly overflow if you don’t properly normalize/divide values.

2. Export the NN module to onnx

48 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM0255.html
https://docs.luxonis.com/projects/hardware/en/latest/#modular-cameras-designs
https://youtu.be/4keVBYIuz6Q
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM0255.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM0255.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BG0249.html
https://github.com/luxonis/depthai-experiments/tree/master/gen2-custom-models/generate_model#concatenate-frames
https://pytorch.org/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-custom-models/generate_model#blur-frames
https://github.com/luxonis/depthai-experiments/tree/master/gen2-custom-models/generate_model#corner-detection
https://rahulrav.com/blog/depthai_camera.html
https://github.com/kunaltyagi/pytorch_harris/
https://github.com/luxonis/depthai-experiments/blob/master/gen2-custom-models/generate_model/pytorch_concat.py
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/master/generated/torch.cat.html#torch-cat
https://github.com/kunaltyagi/pytorch_harris/
https://en.wikipedia.org/wiki/Half-precision_floating-point_format#Half_precision_examples

DepthAI Docs

Since PyTorch isn’t directly supported by OpenVINO, we first need to export the model to onnx
format and then to OpenVINO. PyTorch has integrated support for onnx, so exporting to onnx is as
simple as:

For 300x300 frames
X = torch.ones((1, 3, 300, 300), dtype=torch.float32)
torch.onnx.export(

CatImgs(),
(X, X, X), # Dummy input for shape
"path/to/model.onnx",
opset_version=12,
do_constant_folding=True,

)

This will export the concatenate model into onnx format. We can visualize the created model using
Netron app:

3. Simplify onnx model

When exporting the model to onnx, PyTorch isn’t very efficient. It creates tons unnecessary oper-
ations/layers which increases the size of your network (which can lead to lower FPS). That’s why
we recommend using onnx-simplifier, a simple python package that removes unnecessary opera-
tions/layers.

import onnx
from onnxsim import simplify

onnx_model = onnx.load("path/to/model.onnx")
model_simpified, check = simplify(onnx_model)
onnx.save(model_simpified, "path/to/simplified/model.onnx")

Here is an example of how significant was the simplification using the onnx-simplifier. On the left,
there’s a blur model (from Kornia) exported directly from PyTorch, and on the right, there’s a sim-
plified network of the same functionality:

4.5. Computer Vision 49

https://onnx.ai/
https://onnx.ai/
https://pytorch.org/docs/stable/onnx.html
https://netron.app/
https://github.com/daquexian/onnx-simplifier

DepthAI Docs

4. Convert to OpenVINO/blob

Now that we have (simplified) onnx model, we can convert it to OpenVINO and then to the .blob
format. For additional information about converting models, see Converting model to MyriadX blob.

This would usually be done first by using OpenVINO’s model optimizer to convert from onnx to
IR format (.bin/.xml) and then using Compile tool to compile to .blob. But we could also use
blobconverter to convert from onnx directly to .blob.

Blobconverter just does both of these steps at once - without the need of installing OpenVINO. You
can compile your onnx model like this:

import blobconverter

blobconverter.from_onnx(
model="/path/to/model.onnx",
output_dir="/path/to/output/model.blob",
data_type="FP16",
shaves=6,
use_cache=False,
optimizer_params=[]

)

5. Use the .blob in your pipeline

You can now use your .blob model with the NeuralNetwork node. Check depthai-
experiments/custom-models to run the demo applications that use these custom models.

50 Chapter 4. Ecosystem

https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html
https://docs.openvinotoolkit.org/latest/openvino_inference_engine_tools_compile_tool_README.html
https://docs.luxonis.com/projects/api/en/latest/components/nodes/neural_network/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-custom-models
https://github.com/luxonis/depthai-experiments/tree/master/gen2-custom-models

DepthAI Docs

Kornia

Kornia, “State-of-the-art and curated Computer Vision algorithms for AI.”, has a set of common computer vision
algorithms implemented in PyTorch. This allows users to do something similar to:

import kornia

class Model(nn.Module):
def forward(self, image):

return kornia.filters.gaussian_blur2d(image, (9, 9), (2.5, 2.5))

and use the exact same procedure as described in Create a custom model with PyTorch to achieve frame blurring, as
shown below:

Note: during our testing, we have found that several algorithms aren’t supported by either the OpenVINO frame-
work or by the VPU. We have submitted an Issue for Sobel filter already.

Our platform supports computer vision (CV) functions to be performed on the device itself. While you can’t run
OpenCV, you can use many of its supported functions. With DepthAI pipeline builder you can:

• Crop, rotate, warp/dewarp, mirror, flip, transform perspective, etc. with ImageManip node

• Detect edges (Sobel filter) with EdgeDetector node

• Detect and track features with FeatureTracker node

• Track objects (Kalman filter, Hungarian algorithm) with ObjectTracker node. Out-of-the-box support for Yolo
and MobileNet object detectors.

• Perceive stereo depth (Census Tranform, Cost Matching and Aggregation) with StereoDepth node

If you would like to use any other CV functions, see Run your own CV functions on-device documentation on how to
implement and run CV functions efficiently on the device’s hardware-accelerated blocks.

4.5. Computer Vision 51

https://kornia.readthedocs.io/en/latest/
https://github.com/luxonis/depthai-experiments/blob/master/gen2-custom-models/generate_model/kornia_blur.py
https://github.com/openvinotoolkit/openvino/issues/7557
https://kornia.readthedocs.io/en/latest/filters.html?highlight=sobel#kornia.filters.Sobel
https://github.com/opencv/opencv
https://docs.luxonis.com/projects/api/en/latest/components/nodes/image_manip/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/edge_detector/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/feature_tracker/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/object_tracker/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/

DepthAI Docs

Some other CV examples:

• Lossless zooming

• Host-side WLS depth filtering

• PointCloud visualization

4.6 On-device programming

4.6.1 On-device Pointcloud NN model

At the time of writing, DepthAI firmware (2.15) doesn’t support converting depth to pointcloud. On the On-device
programming page it’s mentioned that Script node shouldn’t be used for any kind of heavy computing, so to convert
depth to pointcloud, we would need to create a custom NN model.

Kornia library has a function called depth_to_3d which does exactly that; it returns pointcloud from depth map and
camera matrix. A smart person from our Discord community called jjd9 created a working demo of the depth_to_3d
logic running on the OAK camera. For C++ version, see code here.

Depth to NN model

StereoDepth’s depth output is U16 (Unsigned INT 16) datatype. Myriad X only supports FP16 datatype, but with
OpenVINO’s Compile Tool you can add conversion layer at the input with -ip or -iop arguments. These arguments
only support FP16 (so no conversion) or U8 (adds U8 -> FP16 layer before the input).

Current workaround is to set conversion for U8 -> FP16 (-ip U8). This means the frame will be twice as wide, as
each depth pixel will be represented by two (U8) integers. So instead of 640x400 depth frame, the model expects
1280x400 frame.

convert the uint8 representation of the image to uint16 (this is needed because the
converter only allows U8 and FP16 input types)
depth = 256.0 * image[:,:,:,1::2] + image[:,:,:,::2]

52 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments/tree/master/gen2-lossless-zooming
https://github.com/luxonis/depthai-experiments/tree/master/gen2-wls-filter
https://github.com/luxonis/depthai-experiments/tree/master/gen2-pointcloud
https://kornia.github.io/
https://kornia.readthedocs.io/en/latest/geometry.depth.html?highlight=depth_to_3d#kornia.geometry.depth.depth_to_3d
https://github.com/jjd9/depthai-experiments/tree/kornia-depth-deprojection/gen2-kornia-depth-deprojection
https://discuss.luxonis.com/d/1212-on-device-pointcloud-nn-model-with-c/7
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/
https://docs.openvino.ai/2022.1/openvino_inference_engine_tools_compile_tool_README.html

DepthAI Docs

The code above was added to the model definition. It takes two FP16 numbers and reconstructs the original depth
value, so the depth tensor has shape 640x400 and is FP16 datatype. This logic can also be seen in the model
architecture:

Optimizing the Pointcloud model

A few improvements could be made, as:

• The camera matrix is hard-coded into the NN model. This means users would have to create their own NN
models, which adds unnecessary package dependencies (pytorch, onnx, onnxsim, blobconverter).

• It’s fairly slow - pointcloud calculation (without visualization) runs at ~19FPS for 640x400 depth frames.

Since the camera matrix (intrinsics) is static, the part below in red could be calculated once instead of being calculated
every single depth frame. This should reduce the complexity of the model and improve FPS.

4.6. On-device programming 53

DepthAI Docs

Since Kornia library is open source, we can start with the architecture of the depth_to_3d function (code here) and
remove the unnecessary part of the model. After moving all the logic to the same function, we end with this code.

We can remove the part of the model that calculates xyz vector and calculate it once on the host, then send it to the
model and reuse it for every inference. I have also converted the code so it uses numpy functions instead of pytorch
ones, to avoid pytorch dependency:

def create_xyz(width, height, camera_matrix):
xs = np.linspace(0, width - 1, width, dtype=np.float32)
ys = np.linspace(0, height - 1, height, dtype=np.float32)

(continues on next page)

54 Chapter 4. Ecosystem

https://github.com/kornia/kornia/blob/15fb1aebd8f9e16af61efb130efb004f7a7b7e20/kornia/geometry/depth.py#L24
https://gist.github.com/Erol444/0a9f4ae505ef9208edb144e0237f1050

DepthAI Docs

(continued from previous page)

generate grid by stacking coordinates
base_grid = np.stack(np.meshgrid(xs, ys)) # WxHx2
points_2d = base_grid.transpose(1, 2, 0) # 1xHxWx2

unpack coordinates
u_coord: np.array = points_2d[..., 0]
v_coord: np.array = points_2d[..., 1]

unpack intrinsics
fx: np.array = camera_matrix[0, 0]
fy: np.array = camera_matrix[1, 1]
cx: np.array = camera_matrix[0, 2]
cy: np.array = camera_matrix[1, 2]

projective
x_coord: np.array = (u_coord - cx) / fx
y_coord: np.array = (v_coord - cy) / fy

xyz = np.stack([x_coord, y_coord], axis=-1)
return np.pad(xyz, ((0,0),(0,0),(0,1)), "constant", constant_values=1.0)

Moving this logic to the host side has significantly reduced the model’s complexity, as seen below.

4.6. On-device programming 55

DepthAI Docs

On-device Pointcloud demo

Altering the model has improved the performance of it, but not as much as I would have expected. The demo now runs
at about 24FPS (previously 19FPS) for the 640x400 depth frames.

This demo can be found at depthai-experiments.

56 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments/tree/master/gen2-pointcloud/device-pointcloud

DepthAI Docs

On the host side we only downsample (for faster visualization). For “cleaner” pointcloud we could also remove
statistical outliers, but that’s outside the scope of this tutorial.

While regular (firmware) on-device development is not possible due to closed nature of native tooling, we still expose
a couple of alternative ways of running custom code:

1. Scripting - Using Python3.9 with Script node

2. Creating your own NN model to run more computationally heavy features

3. Creating custom OpenCL kernels

Note: With Series 3 OAK cameras, users will be able to run custom containirized apps on the OAK camera itself.

4.6.2 Using Script node

Using Script node allows you to run custom python scripts on the device itself, which allows users greater flexibility
when constructing pipelines.

Script node is also very useful when using multiple neural networks in series and you need to process the output
of the 1st one before feeding an image to the second one. Example here would be face age/gender recognition demo -
first NN would detect faces, pass detections to the Script node which would create ImageManip configurations to crop
the original frame and feed the face age/gender recognition NN only the cropped face frame.

For running computationally heavy features (eg. image filters), due to performance reasons you might want to avoid
using Script node and rather go with one of the 2 options described below.

4.6.3 Creating custom NN models

You can create custom models with your favourite NN library, convert the model into OpenVINO and then compile it
into the .blob. More information on this topic can be found on Converting model to MyriadX blob documentation.

Refer to Run your own CV functions on-device page to find out more, or check On-device Pointcloud NN model
tutorial.

4.6. On-device programming 57

https://docs.luxonis.com/projects/api/en/latest/components/nodes/script/
https://en.wikipedia.org/wiki/OpenCL
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s3.html#custom-applications
https://docs.luxonis.com/projects/api/en/latest/components/nodes/script/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-age-gender
https://docs.luxonis.com/projects/api/en/latest/components/messages/image_manip_config/
https://docs.openvinotoolkit.org/latest/omz_models_model_age_gender_recognition_retail_0013.html

DepthAI Docs

4.6.4 Creating custom OpenCL kernel

Creating custom NN models has some limitations, for example unsupported layers by OpenVINO/VPU. To avoid
these limitations, you could consider creating custom OpenCL kernel and compile it for the VPU. This kernel will run
on SHAVE core(s) on the VPU. One should also take into the account that this option is not super user friendly. We
plan on creating a tutorial on how to develop these and run them on OAK cameras.

• Tutorial on how to implement custom layers with OpenCL by OpenVINO

• Custom kernel implementations in OpenCL

4.7 FAQs & How-To

4.7.1 Why Does DepthAI Exist?

In trying to solve an Embedded Spatial AI problem (details here), we discovered that although the perfect chip existed,
there was no platform (hardware, firmware, or software) which allowed the chip to be used to solve such a Spatial AI
& CV problem.

So we built the platform - known as DepthAI and the OpenCV AI Kit (OAK) - which allows folks to embed performant,
spatial AI & CV into their products quickly and easily.

4.7.2 What is DepthAI?

DepthAI is the Embedded, Performant, Spatial AI+CV platform, composed of an open-source hardware, firmware,
software ecosystem that provides turnkey embedded Spatial AI+CV and hardware-accelerated computer vision.

It gives embedded systems the super-power of human-like perception in real-time: what an object is and where it is in
physical space.

It can be used with off-the-shelf AI models (how-to here) or with custom models using our completely-free training
flow (how-to here).

An example of a custom-trained model is below, where DepthAI is used by a robot to autonomously pick and sort
strawberries by ripeness.

58 Chapter 4. Ecosystem

https://docs.openvinotoolkit.org/2021.1/openvino_docs_IE_DG_Extensibility_DG_VPU_Kernel.html
https://github.com/openvinotoolkit/openvino/tree/2021.4.2/inference-engine/src/vpu/custom_kernels
https://discuss.luxonis.com/d/8-it-works-working-prototype-of-commute-guardian
https://colab.research.google.com/github/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_Object_Detection_With_Custom_Data_Demo_Training.ipynb

DepthAI Docs

It was trained to do so over the course of a weekend, by a student (for a student project), using our free online training
resources.

DepthAI is also open-source (including hardware). This is done so that companies (and even individuals) can prototype
and productize solutions quickly, autonomously, and at low risk.

See the summary of our (MIT-Licensed) Github repositories below, which include open-source hardware, firmware,
software, and machine-learning training.

4.7.3 What is SpatialAI? What is 3D Object Localization?

Spatial AI documentation here. 3D Object Localization documentation here.

4.7.4 How is DepthAI Used? In What Industries is it Used?

DepthAI has been used in effectively every industry, from farming/ranch, to cleaning spots courts, to building personal-
service robots. Here’s a quick list of some common use-cases of DepthAI:

• Visual assistance (for visually impaired, or for aiding in fork-lift operation, etc.)

• Aerial / subsea drones (fault detection, AI-based guidance/detection/routing)

• E-scooter & micromobility (not allowing folks to ride rented e-scooters like jerks)

• Cargo/transport/autonomy (fullness, status, navigation, hazard avoidance)

• Sports monitoring (automatically losslessly zooming in on action)

4.7. FAQs & How-To 59

DepthAI Docs

• Smart agriculture (e.g guiding lasers to kill weeds, pests, or targeting watering)

4.7.5 What Distinguishes OAK-D From Other Cameras?

DepthAI purpose is the tight fusion of real-time, hardware-accelerated depth estimation, neural inference, and com-
puter vision into a single, simple to use interface. It is the equivalent of combining a 12MP/4K camera, a stereo depth
camera, an AI processor into one product. And to boot, it has accelerated CV capabilities to tie this all together.

So this produces a smaller, lower power, more performant, significantly easier-to-use, and lower-cost solution than
what would be otherwise required, which would be to purchase each of these components independently, and do the
lifting to physically integrate them and also write the code to combine disparate codebases.

With DepthAI, this is all done for you, and is available in a device that you can buy and plug into a computer (as
below) - and also a module (here) with all these capabilities that can be integrated into your product - to allow your
products to have these capabilities built-in.

60 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1099.html

DepthAI Docs

4.7.6 How Does DepthAI Provide Spatial AI Results?

There are two ways to use DepthAI to get Spatial AI results:

1. Monocular Neural Inference fused with Stereo Depth. In this mode the neural network is run on a single
camera and fused with disparity depth results. The left, right, or RGB camera can be used to run the neural
inference.

2. Stereo Neural Inference. In this mode the neural network is run in parallel on both the left and right stereo
cameras to produce 3D position data directly with the neural network.

In both of these cases, standard neural networks can be used. There is no need for the neural networks to be trained
with 3D data.

DepthAI automatically provides the 3D results in both cases using standard 2D-trained networks, as detailed here.
These modes have differing minimum depth-perception limits, detailed here.

Monocular Neural Inference fused with Stereo Depth

In this mode, DepthAI runs object detection on a single cameras (user’s choice: left, right, or RGB) and the results are
fused with the stereo disparity depth results. The stereo disparity results are produced in parallel and in real-time on
DepthAI (based on semi global matching (SGBM)).

DepthAI automatically fuses the disparity depth results with the object detector results and uses this depth data for
each object in conjunction with the known intrinsics of the calibrated cameras to reproject the 3D position of the
detected object in physical space (X, Y, Z coordinates in meters).

And all of these calculations are done onboard to DepthAI without any processing load to any other systems. This
technique is great for object detectors as it provides the physical location of the centroid of the object - and takes
advantage of the fact that most objects are usually many pixels so the disparity depth results can be averaged to
produce a more accurate location.

A visualization of this mode is below.

4.7. FAQs & How-To 61

DepthAI Docs

In this case the neural inference (20-class object detection per here) was run on the RGB camera and the results were
overlaid onto the depth stream.

And if you’d like to know more about the underlying math that DepthAI is using to perform the stereo depth, see this
excellent blog post here. And if you’d like to run the same example run in that blog, on DepthAI, see this depthai-
experiment.

What is the Max Stereo Disparity Depth Resolution?

The maximum resolution for the depthai depth map is 1280x800 (1MP), with either a 96-pixel (default) or 191-
pixel disparity search (when Extended Disparity is enabled) and either a full-pixel (default) or sub-pixel matching
with precision of 32 sub-pixel steps (when Sub-Pixel Disparity is enabled), resulting in a maximum theoretical depth
precision of 191 (extended disparity search mode) * 32 (sub-pixel disparity search enabled) of 6,112. More information
on the disparity depth modes are below:

1. Default (96-pixel disparity search, range: [0..95]): 1280x800 or 640x400, 96 depth steps

2. Extended Disparity (191-pixel disparity search, range: [0..190]), here: 1280x800 or 640x400, 191 depth steps

3. Subpixel Disparity (32 sub-pixel steps), here, 1280x800 or 640x400, 96 depth steps * 32 subpixel depth steps =
3,072 depth steps.

4. LR-Check Disparity, here: 1280x800, with disparity run in both directions for allowing recentering of the depth.

(see Extended Disparity below)

62 Chapter 4. Ecosystem

https://www.youtube.com/watch?v=sO1EU5AUq4U
https://www.learnopencv.com/introduction-to-epipolar-geometry-and-stereo-vision/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-camera-demo#depth-from-rectified-host-images/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-camera-demo#depth-from-rectified-host-images/

DepthAI Docs

Notes

It is worth noting that monocular neural inference fused with stereo depth is possible for networks like facial-
landmark detectors, pose estimators, etc. that return single-pixel locations (instead of for example bounding boxes
of semantically-labeled pixels), but stereo neural inference is advised for these types of networks better results as
unlike object detectors (where the object usually covers many pixels, typically hundreds, which can be averaged for
an excellent depth/position estimation), landmark detectors typically return single-pixel locations. So if there doesn’t
happen to be a good stereo-disparity result for that single pixel, the position can be wrong.

And so running stereo neural inference excels in these cases, as it does not rely on stereo disparity depth at all, and
instead relies purely on the results of the neural network, which are robust at providing these single pixel results. And
triangulation of the parallel left/right outputs results in very-accurate real-time landmark results in 3D space.

4.7.7 What is the Gen2 Pipeline Builder?

UPDATE: The Gen2 Pipeline Builder is now the standard release of DepthAI. This Gen2 API system was architected
to be next-generation software suite for DepthAI and OAK. All DepthAI and OAK hardware work with Gen1 and
Gen2 software, as Gen2 is purely a software re-write, no hardware changes. Gen2 is infinitely more flexible, and is the
result of all that we learned from the customer deployments of Gen1. Amassing all the requests and need for flexibility
from users of Gen1, we made Gen2. In short, Gen2 allows theoretically-infinite permutations of parallel and series
CV + AI (neural inference) nodes, limited only by hardware capabilities, whereas Gen1 was limited for example to
2-series and 2-parallel neural inference. Full background on the Gen2 Pipeline Builder is here.

Several Gen2 Examples are here and also the docs for Gen2 are now available in the main docs page.

4.7.8 What is megaAI?

OAK-1 (previously MegaAI) is the single-camera version of OAK-D. Because not all solutions to embedded AI/CV
problems require spatial information.

4.7. FAQs & How-To 63

https://github.com/luxonis/depthai/issues/136
https://github.com/luxonis/depthai-experiments#gen2-gaze-estimation-here
https://docs.luxonis.com/projects/api/en/latest/

DepthAI Docs

OAK-1 uses all the same hardware, firmware, software, and training stacks as the OAK-D (and uses the same DepthAI
Github repositories), it is simply the tiny single-camera variant.

More details can be found here.

4.7.9 Which Model Should I Order?

Embedded CV/AI requires all sorts of different shapes/sizes/permutations. And so we have a variety of options to
meet these needs in our store. Below is a quick/dirty summary for the ~10,000-foot view of the options:

• USB3C with Onboard Cameras and Depth (OAK-D) - Great for quickly using DepthAI with a computer. All
cameras are onboard, and it has a USB3C connection which can be used with any USB3 or USB2 host.

• USB3C with Single Camera (OAK-1) - This is just like the OAK-D, but for those who don’t need depth
information. Single, small, plug-and-play USB3C AI/CV camera.

• USB3C with Modular Cameras (OAK-FFC-3P) - Great for prototyping flexibility. Since the cameras are
modular, you can place them at various stereo baselines. This flexibility comes with a trade - you have to figure
out how/where you will mount them, and then once mounted, do a stereo calibration. This is not a TON of
work, but keep this in mind, that it’s not ‘plug and play’ like other options - it’s more for applications that
require custom mounting, custom baseline, or custom orientation of the cameras.

• PoE models (OAK-D-PoE) - It is the equivalent of the OAK-D, with PoE instead of USB. If you don’t need
depth, we have OAK-1-PoE.

• All in One Dev. Kits (OAK-D-CM4) - this one has a built-in Raspberry Pi Compute Module 4. So you literally
plug it into power and HDMI, and it boots up showing off the power of DepthAI.

More products in store.

More details - including open source 3D files and schematics, can be found in hardware documentation.

System on Modules

For designing products around DepthAI, we offer system on modules. You can then design your own variants, lever-
aging our open source hardware. There are three system on modules available:

1. OAK-SoM - USB-boot system on module. For making devices which interface over USB to a host processor
running Linux, MacOS, or Windows. In this case, the host processor stores everything, and the OAK-SoM boots
up over USB from the host.

2. OAK-SoM-IoT - NOR-flash boot (also capable of USB-boot). For making devices that run standalone, or work
with embedded MCUs like ESP32, AVR, STM32F4, etc. Can also USB-boot if/as desirable.

3. OAK-SoM-Pro - NOR flash, eMMC, SD-Card, and USB-boot (selectable via IO on the 2x 100-pin connectors).
For making devices that run standalone and require onboard storage (16GB eMMC) and/or Ethernet Support (the
onboard PCIE interface through one of the 2x 100-pin connectors, paired with an Ethernet-capable base-board
provides Ethernet support).

Check our hardware documentation for more details.

64 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1093.html
https://shop.luxonis.com/collections/all
https://shop.luxonis.com/products/oak-d
https://shop.luxonis.com/products/megaai-kit
https://shop.luxonis.com/collections/modular-cameras/products/dm1090ffc
https://shop.luxonis.com/collections/poe/products/oak-d-poe
https://shop.luxonis.com/collections/poe/products/oak-1-poe
https://shop.luxonis.com/collections/all-in-one-dev-kits/products/depthai-rpi-compute-module-4-edition
https://shop.luxonis.com/
https://docs.luxonis.com/projects/hardware/en/latest/
https://github.com/luxonis/depthai-hardware
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-iot-5-pcs
https://docs.luxonis.com/projects/api/en/latest/tutorials/standalone_mode/
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-pro-5-pcs
https://docs.luxonis.com/projects/api/en/latest/tutorials/standalone_mode/
https://docs.luxonis.com/projects/hardware/en/latest/

DepthAI Docs

4.7.10 How hard is it to get DepthAI running from scratch? What Platforms are
Supported?

Not hard. Usually DepthAI is up/running on your platform within a couple minutes (most of which is download time).
The requirements are Python and OpenCV (which are great to have on your system anyway!). see here for supported
platforms and how to get up/running with them.

Raspbian, Ubuntu, macOS, Windows, and many others are supported and are easy to get up/running. For the list of
supported platforms (and instructions on how to get started), click here.

It’s a matter of minutes to be up and running with the power of Spatial AI, on the platform of your choice. Below is
DepthAI running on my Mac.

(Click on the image above to pull up the YouTube video.)

The command to get the above output is

python3 depthai_demo.py -gt cv -s color depth -sbb

Here is a single-camera version (OAK-1) running with python3 depthai_demo.py -gt cv -s color:

4.7. FAQs & How-To 65

https://docs.luxonis.com/projects/api/en/latest/install/#supported-platforms
https://docs.luxonis.com/projects/api/en/latest/install/#supported-platforms
https://www.youtube.com/watch?v=SWDQekolM8o

DepthAI Docs

66 Chapter 4. Ecosystem

https://www.youtube.com/watch?v=dZzg4sTeE3M

DepthAI Docs

4.7.11 Is OAK camera easy to use with Raspberry Pi?

Very. It’s designed for ease of setup and use, and to keep the Pi CPU not-busy. You can find additional information
here.

4.7.12 Can all the models be used with the Raspberry Pi?

Yep! All the models can be used with the Raspberry Pi. The only difference is that the Raspberry Pi is not as powerful
as a desktop computer. You can find additional information here.

4.7.13 Does DepthAI Work on the Nvidia Jetson Series?

Yes, DepthAI works cleanly on all the Jetson/Xavier series, and installation is easy. Jetson Nano, Jetson Tx1, Jetson
Tx2, Jetson Xavier NX, Jetson AGX Xavier, etc. are all supported.

See below for DepthAI running on a Jetson Tx2 I have on my desk:

Installing for NVIDIA Jetson and Xavier is now the same set of instructions as Ubuntu. See here and following the
standard Ubuntu instructions.

Also don’t forget about the udev rules after you have that set up. And make sure to unplug and replug your depthai
after having run the following commands (this allows Linux to execute the modification of the USB rules).

4.7. FAQs & How-To 67

https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/raspberrypi.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/raspberrypi.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/raspberrypi.html
https://docs.luxonis.com/en/latest/pages/api/#ubuntu

DepthAI Docs

echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03e7", MODE="0666"' | sudo tee /etc/udev/
→˓rules.d/80-movidius.rules
sudo udevadm control --reload-rules && sudo udevadm trigger

4.7.14 Can I Use Multiple DepthAI With One Host?

Yes. DepthAI is architected to put as-little-as-possible burden on the host. So even with a Raspberry Pi you can run a
handful of DepthAI with the Pi and not burden the Pi CPU.

See here for instructions on how to do so.

4.7.15 Is DepthAI OpenVINO Compatible?

Yes, DepthAI is fully compatible with OpenVINO.

4.7.16 Can I Train My Own Models for DepthAI?

Yes.

We have a tutorial around Google Colab notebooks you can even use for this. See here

4.7.17 Do I Need Depth Data to Train My Own Custom Model for DepthAI?

No.

That’s the beauty of DepthAI. It takes standard object detectors (2D, pixel space) and fuses these neural networks with
stereo disparity depth to give you 3D results in physical space.

Now, could you train a model to take advantage of depth information? Yes, and it would likely be even more accurate
than the 2D version. To do so, record all the streams (left, right, and color) and retrain on all of those (which would
require modifying the front-end of say MobileNet-SSD to allow 5 layers instead of 3 (1 for each grayscale, 3 for the
color R, G, B)).

4.7.18 If I train my own network, which Neural Operations are supported by
DepthAI?

See the VPU section here.

Anything that’s supported there under VPU will work on DepthAI. It’s worth noting that we haven’t tested all of these
permutations though.

68 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/tutorials/multiple/
https://github.com/luxonis/depthai-ml-training/tree/master/colab-notebooks#tiny-yolov3-object-detector-training-
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_Supported_Devices.html

DepthAI Docs

4.7.19 What network backbones are supported on DepthAI?

All the networks listed here are supported by DepthAI.

We haven’t tested all of them though. So if you have a problem, contact us and we’ll figure it out.

4.7.20 My Model Requires Pre-Processing (normalization, for example). How do I
do that in DepthAI?

The OpenVINO toolkit allows adding these pre-processing steps to your model, and then these steps are performed
automatically by DepthAI. See here for how to take advantage of this.

For instance, to scale frame pixels to the range [0,1], consider adding the following parameters to the model optimizer:
--data_type=FP16 --scale_values [255,255,255]

To scale to the range [-1, 1], mean values should be added, e.g. for mobilenet: --scale_values [127.5,
127.5, 127.5] --mean_values [127.5, 127.5, 127.5]

More model converting options here

4.7.21 Can I Run Multiple Neural Models in Parallel or in Series (or Both)?

Yes. The Gen2 Pipeline Builder is what allows you to do this. And we have several example implementations of
parallel, series, and parallel+series in depthai-experiments repository. A notable example is the Gaze estimation
example, here, which shows series and parallel all together in one example.

4.7.22 Can DepthAI do Arbitrary Crop, Resize, Thumbnail, etc.?

Yes, see here for an example of how to do this, with WASD controls of a cropped section. And see here for extension
of the cropping for non-rectangular crops, and warping those to be rectangular (which can be useful for OCR).

4.7.23 Can DepthAI Run Custom CV Code? Say CV Code From PyTorch?

Yes, see documentation here.

4.7.24 How do I Integrate DepthAI into Our Product?

How to integrate DepthAI depends on whether the product you are building includes:

1. a processor running an operating system (Linux, MacOS, or Windows) or

2. a microcontroller (MCU) with no operating system (or an RTOS like FreeRTOS) or

3. no other processor or microcontroller (i.e. DepthAI is the only processor in the system).

We offer hardware to support all 3 use-cases, but firmware/software maturity varies across the 3 modes:

1. Using our Python API and/or C++ API (equal capabilities)

2. Using our C++ SPI API (see here),

3. Using our standalone flashing utility to flash a depthai application for standalone mode (leveraging our SBR Util
here).

In all cases, DepthAI is compatible with OpenVINO for neural models. The only thing that changes between the
modalities is the communication (USB, Ethernet, SPI, etc.) and what (if any) other processor is involved.

4.7. FAQs & How-To 69

https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_supported_plugins_MYRIAD.html
https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html#when_to_specify_mean_and_scale_values
https://docs.openvinotoolkit.org/latest/openvino_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html
https://github.com/luxonis/depthai/issues/136
https://github.com/luxonis/depthai-experiments
https://github.com/luxonis/depthai-experiments/tree/master/gaze-estimation
https://docs.luxonis.com/projects/api/en/latest/samples/ColorCamera/rgb_camera_control/#rgb-camera-control
https://github.com/luxonis/depthai-shared/pull/16
https://docs.luxonis.com/projects/api/en/latest/install/
https://github.com/luxonis/depthai-spi-api
https://docs.luxonis.com/projects/api/en/latest/tutorials/standalone_mode/
https://github.com/luxonis/sbr-util

DepthAI Docs

Use-Case 1: DepthAI are a co-processor to a processor running Linux, MacOS, or Windows.

In this case, OAK camera can be used in two modalities:

• DepthAI Mode (USB, using depthai API, here) - this uses the onboard cameras directly into the VPU, and
boots the firmware over USB from a host processor running Linux, Mac, or Windows. This is the main use-case
of DepthAI/megaAI when used with a host processor capable of running an operating system (e.g Raspberry Pi,
i.MX8, etc.).

• NCS2 Mode (USB, here) - in this mode, the device appears as an NCS2 and the onboard cameras are not used
and it’s as if they don’t exist. This mode is often use for initial prototyping, and in some cases, where a product
simply needs an ‘integrated NCS2’ - accomplished by integrating a OAK-SoM.

Use-Case 2: Using DepthAI with a MicroController like ESP32, ATTiny8, etc.

In this case, DepthAI boots off of internal flash on the OAK-SoM-IoT and communicates over SPI, allowing DepthAI
to be used with microcontroller such as the STM32, MSP430, ESP32, ATMega/Arduino, etc.

Use-Case 3: Using DepthAI as the Only Processor on a Device.

This is supported through running Python directly on the OAK-SoM-Pro or OAK-SoM-IoT inside Script node.

The Script node allows custom logic, driving GPIO, UART, network protocols etc., letting direct controls of actua-
tors, direct reading of sensors, etc. from/to the pipeline of CV/AI functions. A target example is making an entire
autonomous, visually-controlled robotic platform with DepthAI as the only processor in the system.

Hardware for Each Case:

• OAK-SoM: USB boot. So it is intended for working with a host processor running Linux, Mac, or Windows
and this host processor boots the OAK-SoM over USB

• OAK-SoM-IoT: USB boot or NOR-flash boot. This module can work with a host computer just like the OAK-
SoM, but also has a 128MB NOR flash built-in and boot switches onboard - so that it can be programmed to
boot off of NOR flash instead of USB. So this allows use of the DepthAI in pure-embedded applications where
there is no operating system involved at all. So this module could be paired with an ATTiny8 for example,
communicating over SPI.

• OAK-SoM-Pro: Supports multiple boot options: NOR (128MB), eMMC (SD-Card support), USB, Ethernet
(EEPROM, 32KB). All those boot options make OAK-SoM-Pro very flexible in terms of use cases and most
appropriate as a standalone device. It is designed for integration into a top-level system with a need for a low
power AI vision system.

Getting Started with Development

Whether intending to use DepthAI with an OS-capable host, a microcontroller over SPI (in development), or com-
pletely standalone - we recommend starting with either NCS2 mode or with the DepthAI USB API for proto-
type/test/etc. as it allows faster iteration/feedback on neural model performance/etc. And in particular, with NCS2
mode, all the images/video can be used directly from the host (so that you don’t have to point the camera at the thing
you want to test).

In DepthAI mode, theoretically, anything that will run in NCS2 mode will run - but sometimes it needs host-side
processing if it’s a network we’ve never run before. And this work is usually not heavy lifting. See some examples
here and in out Github.

70 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/install/
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-iot-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-pro-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-iot-5-pcs
https://docs.luxonis.com/projects/api/en/latest/components/nodes/script/
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-iot-5-pcs
https://shop.luxonis.com/collections/system-on-module-som/products/oak-som-pro-5-pcs
https://docs.luxonis.com/projects/api/en/latest/install/
https://docs.luxonis.com/en/latest/#example-use-cases
https://github.com/luxonis/depthai-experiments

DepthAI Docs

For common object detector formats (MobileNet-SSD, (Tiny) YOLO V3/V4) there’s effectively no work to go from
NCS2 mode to DepthAI mode because we have added the support for decoding their results on the device side. To use
the device side decoding with gen2, have a look at YoloDetectionNetwork for YOLO (demo here) or MobileNetDe-
tectionNetwork for MobileNet (demo here) decoding.

To use your own trained Yolo model with the DepthAI, you should start with the demo and modify its code a bit:

• Change the labels at labelMap = ["label1", "label2", "..."], depending on your model

• Set the number of classes at detectionNetwork.setNumClasses() depending on your model

• If you haven’t compiled the model with the latest OpenVINO version, set the OpenVINO version

• Don’t forget to change the path to the model (.blob file)

For MobileNet you should follow the same steps (skip the 2nd one) but start with the MobileNet demo.

Interested in how to train an object detector with your data? You can check our Yolo V4 training tutorial here!

4.7.25 What Hardware-Accelerated Capabilities Exist in DepthAI and/or megaAI?

The DepthAI system is a node-and-graph pipeline builder. Below are the hardware-accelerated nodes that exist in this
builder.

Available in DepthAI API Today:

• Neural Inference Node, which is compatible with OpenVINO (e.g. object detection, image classification, etc.,
including multi-stage inference, e.g. here and here)

• Stereo Depth (including median filtering) (e.g. here)

• Stereo Inference (with two-stage, e.g. here)

• 3D Object Localization (augmenting 2D object detectors with 3D position in meters, e.g. here and here)

• Object Tracking (e.g. here, including in 3D space)

• H.264 and H.265 Encoding (HEVC, 1080p & 4K Video, e.g. here)

• JPEG Encoding (e.g. here)

• MJPEG Encoding

• Warp/Dewarp (for RGB-depth alignment/etc.)

• Enhanced Disparity Depth Modes (Sub-Pixel, LR-Check, and Extended Disparity), here

• SPI Support, here

• Arbitrary crop/rescale/reformat and ROI return (e.g. here)

• Integrated Text Detection (e.g. here)

• Pipeline Builder Gen2 (arbitrary series/parallel combination of neural nets and CV functions, background here
and API documentation is here).

• Lossless zoom (from 12MP full to 4K, 1080p, or 720p, here)

• Improved Stereo Neural Inference Support (here)

• Integrated IMU Support (here)

• Edge Detection (here, video)

• On-Device Python Scripting Support, here

4.7. FAQs & How-To 71

https://docs.luxonis.com/projects/api/en/latest/components/nodes/yolo_detection_network/
https://docs.luxonis.com/projects/api/en/latest/samples/Yolo/tiny_yolo/#rgb-tiny-yolo
https://docs.luxonis.com/projects/api/en/latest/components/nodes/mobilenet_detection_network/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/mobilenet_detection_network/
https://docs.luxonis.com/projects/api/en/latest/samples/mixed/mono_depth_mobilenetssd/#mono-mobilenetssd-depth
https://docs.luxonis.com/projects/api/en/latest/samples/Yolo/tiny_yolo/#rgb-tiny-yolo
https://docs.luxonis.com/projects/api/en/latest/samples/MobileNet/mono_mobilenet/
https://github.com/luxonis/depthai-ml-training/blob/master/colab-notebooks/Easy_TinyYOLOv4_Object_Detector_Training_on_Custom_Data.ipynb
https://youtu.be/uAfGulcDWSk
https://github.com/luxonis/depthai-experiments/tree/master/gen2-gaze-estimation#gen2-gaze-estimation
https://youtu.be/sO1EU5AUq4U
https://youtu.be/eEnDW0WQ3bo
https://youtu.be/cJr4IpGMSLA
https://youtu.be/SWDQekolM8o
https://vimeo.com/422965770
https://youtu.be/vEq7LtGbECs
https://github.com/luxonis/depthai-experiments/tree/master/gen2-class-saver-jpeg#gen2-class-saver-jpeg
https://github.com/luxonis/depthai/issues/163
https://github.com/luxonis/depthai/issues/140
https://docs.luxonis.com/projects/api/en/latest/samples/ColorCamera/rgb_camera_control/#rgb-camera-control
https://github.com/luxonis/depthai-experiments/tree/master/gen2-ocr#gen2-text-detection--optical-character-recognition-ocr-pipeline
https://github.com/luxonis/depthai/issues/136
https://docs.luxonis.com/projects/api/en/latest/
https://github.com/luxonis/depthai/issues/135
https://github.com/luxonis/depthai-experiments/tree/master/gen2-triangulation
https://github.com/luxonis/depthai-hardware/issues/8
https://docs.luxonis.com/projects/api/en/latest/samples/EdgeDetector/edge_detector/
https://youtu.be/bG15mpK4z2s
https://docs.luxonis.com/projects/api/en/latest/components/nodes/script/

DepthAI Docs

• Feature Tracking (here, video)

The above features are available in the Luxonis Pipeline Builder Gen2 which is now the main API for DepthAI. The
Gen1 API is still supported, and can be accessed via the version switcher at the bottom left of this page. See below for
in-progress additional functionality/flexibility which will be added as modular nodes to the Luxonis pipeline builder
for DepthAI.

On our Roadmap (Most are in development/integration)

• Motion Estimation (here)

• Background Subtraction (here)

• OpenCL Support (supported through OpenVINO (here))

And see our Github project here to follow along with the progress of these implementations.

Pipeline Builder Gen2

The 2nd-generation DepthAI pipeline builder which incorporates all the feedback we learned from our first Generation
API. It is now the mainline way to use DepthAI.

It allows multi-stage neural networks to be pieced together in conjunction with CV functions (such as motion es-
timation or Harris filtering) and logical rules, all of which run on DepthAI/megaAI/OAK without any load on the
host.

4.7.26 Are CAD Files Available?

Yes.

The full designs (including source Altium files) for all the carrier boards are in our depthai-hardware Github.

4.7.27 How to enable depthai to perceive closer distances

If the depth results for close-in objects look weird, this is likely because they are below the minimum depth-perception
distance of OAK-D.

For OAK-D, the standard-settings minimum depth is around 70cm.

This can be cut in 1/2 and 1/4 with the following options:

1. Change the resolution to 640x400, instead of the standard 1280x800.

2. Enable Extended Disparity.

See these examples for how to enable Extended Disparity.

For more information see the StereoDepth documentation.

72 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/components/nodes/feature_tracker/
https://www.youtube.com/watch?v=0WonOa0xmDY
https://github.com/luxonis/depthai/issues/245
https://github.com/luxonis/depthai/issues/136
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_Extensibility_DG_VPU_Kernel.html
https://github.com/orgs/luxonis/projects/2
https://github.com/luxonis/depthai-hardware
https://github.com/luxonis/depthai-experiments/tree/master/gen2-camera-demo#real-time-depth-from-depthai-stereo-pair
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#min-stereo-depth-distance

DepthAI Docs

4.7.28 What are the Minimum Depths Visible by DepthAI?

There are two ways to use DepthAI for 3D object detection and/or using neural information to get real-time 3D position
of features (e.g. facial landmarks):

1. Monocular Neural Inference fused with Stereo Depth

2. Stereo Neural Inference

Monocular Neural Inference fused with Stereo Depth

In this mode, the AI (object detection) is run on the left, right, or RGB camera, and the results are fused with stereo
disparity depth, based on semi global matching (SGBM). The minimum depth is limited by the maximum disparity
search, which is by default 96, but is extendable to 191 in extended disparity modes (see Extended Disparity below).

To calculate the minimum distance in this mode, use the following formula:

min_distance = focal_length_in_pixels * base_line_dist / max_disparity_in_pixels

Where the focal_length_in_pixels is (HFOV of the grayscale global shutter cameras is 71.9 degrees):

focal_length_in_pixels = 1280 * 0.5 / tan(71.9 * 0.5 * PI / 180) = 882.5

Calculation here (and for disparity depth data, the value is stored in uint16, where 0 is a special value, meaning that
distance is unknown.)

By using the formula above with the default settings of OAK-D (base_line_dist = 7.5cm, max_disparity_in_pixels =
95), we get:

min_distance = 882.5 * 7.5cm / 95 = 69.67cm

Note that this distance can be halved by either:

• Changing the resolution to 640x400, instead of the standard 1280x800.

• Enabling Extended Disparity - see these examples for how to enable Extended Disparity.

Extended disparity mode sets the max_disparity_in_pixels to 190, thus the min_distance for the above OAK-D exam-
ple is:

min_distance = 882.5 * 7.5cm / 190 = 34.84cm

Note that applying both options is possible, but at such short distances, the minimum distance is limited by focal
length, which is 19.6cm, so minimum distance cannot be lower than 19.6cm.

Calculation examples for OAK-D:

• ~ 70cm with standard disparity (1280x800 resolution)

• ~ 35cm with extended disparity (1280x800 resolution)

• ~ 35cm with 640x400 resolution

• ~ 19.6cm with extended disparity and 640x400 resolution

For a more detailed explanation refer to the StereoDepth documentation.

4.7. FAQs & How-To 73

https://www.google.com/search?safe=off&sxsrf=ALeKk01DFgdNHlMBEkcIJdWmArcgB8Afzg%3A1607995029124&ei=lQ7YX6X-Bor_-gSo7rHIAg&q=1280%2F%282*tan%2871.9%2F2%2F180*pi%29%29&oq=1280%2F%282*tan%2871.9%2F2%2F180*pi%29%29&gs_lcp=CgZwc3ktYWIQAzIECCMQJzoECAAQR1D2HljILmDmPWgAcAJ4AIABywGIAZMEkgEFNC4wLjGYAQCgAQGqAQdnd3Mtd2l6yAEFwAEB&sclient=psy-ab&ved=0ahUKEwjlnIuk6M7tAhWKv54KHSh3DCkQ4dUDCA0&uact=5
https://github.com/luxonis/depthai-experiments/tree/master/gen2-camera-demo#real-time-depth-from-depthai-stereo-pair
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#min-stereo-depth-distance

DepthAI Docs

Onboard Camera Minimum Depths

Below are the minimum depth perception possible in the disparity depth and stereo neural inference modes.

Monocular Neural Inference fused with Stereo Depth Mode

For DepthAI units with onboard cameras, this works out to the following minimum depths:

• OAK-D-CM4 the minimum depth is 0.836 meters for full 1280x800 stereo resolution and 0.418 meters for
640x400 stereo resolution:

min_distance = 882.5 * 0.09 / 95 = 0.836 # m

calculation here

• OAK-D is

– 0.697 meters for standard disparity,

– 0.348 meters for Extended Disparity (191 pixel) at 1280x800 resolution or standard disparity at 640x400
resolution, and

– 0.196 meters for Extended Disparity at 640x400 resolution (this distance is limited by the focal distance
of the cameras on OAK-D)

min_distance = 882.5 * 0.075 / 95 = 0.697 # m

calculation here

Stereo Neural Inference Mode

For DepthAI units with onboard cameras, all models (OAK-D-CM4 and OAK-D) are limited by the hyperfocal dis-
tance of the stereo cameras, so their minimum depth is 0.196 meters.

Modular Camera Minimum Depths:

Below are the minimum depth perception possible in the disparity depth and stereo neural inference modes.

Monocular Neural Inference fused with Stereo Depth Mode

For DepthAI units which use modular cameras, the minimum baseline is 2.5cm (see image below) which means
the minimum perceivable depth 0.229 meters for full 1280x800 resolution and 0.196 meters for 640x400 resolution
(limited by the minimum focal distance of the grayscale cameras, as in stereo neural inference mode).

The minimum baseline is set simply by how close the two boards can be spaced before they physically interfere:

74 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM1097.html
https://www.google.com/search?safe=off&sxsrf=ALeKk00zuPUIqtKg9E4O1fSrB4IFp04AQw%3A1607995753791&ei=aRHYX57zL9P9-gTk5rmADA&q=882.5*.09%2F95&oq=882.5*.09%2F95&gs_lcp=CgZwc3ktYWIQAzIECCMQJ1CqJ1i8OmDlPGgAcAB4AIABX4gB9ASSAQE4mAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=psy-ab&ved=0ahUKEwjey9H96s7tAhXTvp4KHWRzDsAQ4dUDCA0&uact=5
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html
https://www.google.com/search?safe=off&sxsrf=ALeKk03HLvlfCWau-bIGeYWJk_S6PBSnqw%3A1607995818683&ei=qhHYX4yeKZHr-gSv2JqoAw&q=882.5*.075%2F95&oq=882.5*.075%2F95&gs_lcp=CgZwc3ktYWIQAzIECCMQJ1CIFliUGmDvHGgAcAB4AIABUIgBrwKSAQE0mAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=psy-ab&ved=0ahUKEwiMm8qc687tAhWRtZ4KHS-sBjUQ4dUDCA0&uact=5
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM1097.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html

DepthAI Docs

For any stereo baseline under 29 cm, the minimum depth is dictated by the hyperfocal distance (the distance above
which objects are in focus) of 19.6cm.

For stereo baselines wider than 29 cm, the minimum depth is limited by the horizontal field of view (HFOV):

min_distance = tan((90-HFOV/2)*pi/2)*base_line_dist/2

Extended Disparity Depth Mode

The extended disparity mode affords a closer minimum distance for the given baseline. This increases
the maximum disparity search from 96 to 191. So this cuts the minimum perceivable distance in half (given that
the minimum distance is now focal_length * base_line_dist / 190 instead of focal_length *
base_line_dist / 95).

• OAK-D-CM4: 0.414 meters

• OAK-D is 0.345 meters

• OAK-FFC-3P-OG is 0.115 meters

See here for examples of how to use Extended Disparity Mode.

4.7. FAQs & How-To 75

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM1097.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098FFC.html
https://github.com/luxonis/depthai-experiments#gen2-subpixel-and-lr-check-disparity-depth-here

DepthAI Docs

And for a bit more background as to how this mode is supported:

Extended disparity: allows detecting closer distance objects, without compromising on long distance values (integer
disparity) by running the following flow.

1. Computes disparity on the original size images (e.g. 1280x720)

2. Computes disparity on 2x downscaled images (e.g. 640x360)

3. Combines the two level disparities on Shave, effectively covering a total disparity range of 191 pixels (in relation
to the original resolution).

Left-Right Check Depth Mode

Left-Right Check, or LR-Check is used to remove incorrectly calculated disparity pixels due to occlusions at object
borders (Left and Right camera views are slightly different).

1. Computes disparity by matching in R->L direction

2. Computes disparity by matching in L->R direction

3. Combines results from 1 and 2, running on Shave: each pixel d = disparity_LR(x,y) is compared with
disparity_RL(x-d,y). If the difference is above a threshold, the pixel at (x,y) in final disparity map is invali-
dated.

To run LR-Check on DepthAI/OAK, use the example here.

4.7.29 What Are The Maximum Depths Visible by DepthAI?

The max depth perception is limited by the physics of the baseline and the number of pixels (see documentation here).

Each OAK camera has max depth perception specified in its hardware documentation page.

Subpixel Disparity Depth Mode

Subpixel improves the precision and is especially useful for long range measurements. It also helps for better estimat-
ing surface normals (comparison of normal disparity vs. subpixel disparity is here).

Beside the integer disparity output, the Stereo engine is programmed to dump to memory the cost volume, that is 96
bytes (disparities) per pixel, then software interpolation is done on Shave, resulting a final disparity with 5 fractional
bits, resulting in significantly more granular depth steps (32 additional steps between the integer-pixel depth steps),
and also theoretically, longer-distance depth viewing - as the maximum depth is no longer limited by a feature being a
full integer pixel-step apart, but rather 1/32 of a pixel.

Examples of the difference in depth steps from standard disparity to subpixel disparity are shown below:

Standard Disparity (96 depth steps):

76 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments#gen2-subpixel-and-lr-check-disparity-depth-here
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#max-stereo-depth-distance
https://docs.luxonis.com/projects/hardware/en/latest/
https://github.com/luxonis/depthai/issues/184

DepthAI Docs

Subpixel Disparity (3,072 depth steps):

4.7. FAQs & How-To 77

DepthAI Docs

To run Subpixel on DepthAI/OAK, use the example here.

4.7.30 How Does DepthAI Calculate Disparity Depth?

DepthAI makes use of a combination of hardware-blocks (a semi-global-matching disparity (SGBM) hardware block)
as well as accelerated vector processing code in the SHAVES of the Myriad X to produce the disparity depth.

The SGBM hardware-block can process up to 1280x800 pixels, this is its hardware limit. Using higher-resolution
sensors is technically possible via downscaling. So for example, using the 12MP color camera with the 1280x800
grayscale camera is possible (and has been prototyped by some users with the Gen2 pipeline builder). Or 2x 12MP
image sensors could be used for depth (theoretically). But in both cases, the image data needs to be either decimated
down to 1280x800, or converted in some other way (e.g. selectively cropped/windowed).

What Disparity Depth Modes are Supported?

See Stereo Mode tab on SterepDepth documentation.

4.7.31 How Do I Calculate Depth from Disparity?

See StereoDepth documentation.

78 Chapter 4. Ecosystem

https://github.com/luxonis/depthai-experiments#gen2-subpixel-and-lr-check-disparity-depth-here
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#currently-configurable-blocks
https://docs.luxonis.com/projects/api/en/latest/components/nodes/stereo_depth/#calculate-depth-using-dispairty-map

DepthAI Docs

4.7.32 How Do I Display Multiple Streams?

To specify which streams you would like displayed, use the -s option. For example for the raw disparity map
(disparity), and for depth results (depthRaw), use the following command:

python3 depthai_demo.py -gt cv -s disparity depthRaw

The available streams are:

• nnInput - Neural Network passthrough frames on which inference was made on (300x300 in case of
MobileNet)

• color - 4K color camera, biggest camera on the board with lens

• left - Left grayscale camera (marked L or LEFT on the board)

• right - Right grayscale camera (marked R or RIGHT on the board)

• rectifiedLeft - Rectified left camera frames

• rectifiedRight - Rectified right camera frames

• depth - Depth in uint16

• depthRaw - Raw frames which are used to calculate depth

• disparity - Raw disparity

• disparityColor - Disparity colorized on the host (JET colorized visualization of depth)

Is It Possible to Have Access to the Raw Stereo Pair Stream on the Host?

Yes, you can access raw stereo pair streams using the depthai (API) library. We have an example code here.

4.7.33 How do I Synchronize Streams and/or Meta Data (Neural Inference Results)

When running heavier stereo neural inference, particularly with high host load, this system can break down, and there
are two options which can keep synchronization:

1. Reduce the frame rate of the cameras running the inference to the speed of the neural inference itself, or just
below it.

2. Or pull the timestamps or sequence numbers from the results (frames or metadata) and match them on the host.

See the demo here.

Reducing the Camera Frame Rate

In the case of neural models which cannot be executed at the full 30FPS, this can cause lack of synchronization,
particularly if stereo neural inference is being run using these models in parallel on the left and right grayscale image
sensors.

A simple/easy way to regain synchronization is to reduce the frame rate to match, or be just below, the frame rate of
the neural inference. This can be accomplished via the command line with the using -rgbf and -monof commands.

So for example to run a default model with both the RGB and both grayscale cameras set to 24FPS, use the following
command:

python3 depthai_demo.py -gt cv -rgbf 24 -monof 24

4.7. FAQs & How-To 79

https://en.wikipedia.org/wiki/Image_rectification
https://en.wikipedia.org/wiki/Image_rectification
https://docs.luxonis.com/projects/api/en/latest/samples/MonoCamera/mono_preview/#mono-preview
https://github.com/luxonis/depthai-experiments/tree/master/gen2-nn-sync

DepthAI Docs

Synchronizing on the Host

DepthAI messages has two functions - msg.getTimestamp() and msg.getSequenceNum() - which can be
used for synchronization on host side or on the device using Script node.

You can use sequence number when syncing streams from one device, but when you have multiple OAK cam-
eras and want to sync streams across multiple OAKs, you should use timestamp syncing, as host time is used
(std::chrono::steady_clock) for the timestamps. Further documentation can be found here: Message Syncing.

We also have both timestamp and sequence number syncing demos here.

4.7.34 How do I Record (or Encode) Video with DepthAI?

DepthAI supports h.264 and h.265 (HEVC) and JPEG encoding directly itself - without any host support. The DepthAI
demo app shows and example of how to access this functionality.

See our encoding examples which use VideoEncoder node:

• RGB and Mono Encoding, here.

• RGB Encoding and MobilenetSSD, here.

• RGB Encoding and Mono with MobilenetSSD and Depth, here.

• Encoding Max Limit, here.

Alternatively, to leverage this functionality from the depthai_demo.py script, use the -enc (or –encode) to specify
which cameras to encode (record), with optional -encout argument to specify path to directory where to store encoded
files. An example is below:

python3 depthai_demo.py -gt cv -enc left color -encout [path/to/output]

To then play the video in mp4/mkv format use the following muxing command:

ffmpeg -frame rate 30 -i [path/to/output/video.h264]

For more information about the script and its arguments, see our GitHub repository here.

80 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/components/messages/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/script/
https://en.cppreference.com/w/cpp/chrono/steady_clock
https://docs.luxonis.com/projects/api/en/latest/tutorials/message_syncing/
https://github.com/luxonis/depthai-experiments/tree/master/gen2-syncing#message-syncing
https://docs.luxonis.com/projects/api/en/latest/components/nodes/video_encoder/
https://docs.luxonis.com/projects/api/en/latest/samples/VideoEncoder/rgb_mono_encoding/#rgb-mono-encoding
https://docs.luxonis.com/projects/api/en/latest/samples/mixed/rgb_encoding_mobilenet/#rgb-encoding-mobilenetssd
https://docs.luxonis.com/projects/api/en/latest/samples/mixed/rgb_encoding_mono_mobilenet_depth/#rgb-encoding-mono-with-mobilenetssd-depth
https://docs.luxonis.com/projects/api/en/latest/samples/VideoEncoder/encoding_max_limit/#encoding-max-limit
https://github.com/luxonis/depthai#usage

DepthAI Docs

By default there are keyframes every 1 second which resolve the previous issues with traversing the video as well as
provide the capability to start recording anytime (worst case 1 second of video is lost if just missed the keyframe)

When running depthai_demo.py, one can record a JPEG of the current frame by hitting c on the keyboard.

An example video encoded on DepthAI OAK-D-CM3 (Raspberry Pi Compute Module Edition) is below. All DepthAI
and megaAI units have the same 4K color camera, so will have equivalent performance to the video below.

4.7.35 What are the Capabilities of the Video Encoder on DepthAI?

See capabilities and limitations in the documentation here.

4.7.36 What Is The Stream Latency?

When implementing robotic or mechatronic systems it is often quite useful to know how long it takes from light hitting
an image sensor to when the results are available to a user, the photon-to-results latency.

We have a documentation page here that describes the latency of the various streams available on DepthAI: DepthAI
Latency.

4.7.37 How To Do a Letterboxing (Thumbnailing) on the Color Camera?

You can achieve letterboxing with the ImageManip node, see documentation here.

4.7. FAQs & How-To 81

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1097.html
https://www.youtube.com/watch?v=vEq7LtGbECs
https://docs.luxonis.com/projects/api/en/latest/components/nodes/video_encoder/#limitations
https://docs.luxonis.com/projects/api/en/latest/tutorials/low-latency/
https://docs.luxonis.com/projects/api/en/latest/tutorials/low-latency/
https://docs.luxonis.com/projects/api/en/latest/components/nodes/image_manip/#imagemanip
https://docs.luxonis.com/projects/api/en/latest/tutorials/maximize_fov/#letterboxing

DepthAI Docs

4.7.38 Is it Possible to Use the RGB Camera and/or the Stereo Pair as a Regular
UVC Camera?

Yes, see documentation here.

4.7.39 How Do I Force USB2 Mode?

USB2 Communication may be desirable if you’d like to use extra-long USB cables and don’t need USB3 speeds.

You can force USB2 mode by setting maxUsbSpeed to dai.UsbSpeed.HIGH when creating the device (note - it
works for gen2):

dai.Device(pipeline, maxUsbSpeed=dai.UsbSpeed.HIGH)

The other way is using the -usbs usb2 (or --usbSpeed usb2) command line option as below (this option only
works with depthai_demo.py script):

python3 depthai_demo.py -usbs usb2

Note that if you would like to use DepthAI at distances that are even greater than what USB2 can handle, we do have
DepthAI PoE variants, see here, which allow DepthAI to use up to a 328.1 foot (100 meter) cable for both data and
power - at 1 gigabit per second (1gbps).

4.7.40 What is “NCS2 Mode”?

All OAK cameras come with support of what we call ‘NCS2 mode’. This allows any OAK camera to pretend to be an
NCS2.

So in fact, if you power your unit, plug it into a computer, and follow the instructions/examples/etc. of an NCS2 with
OpenVINO, OAK camera will behave identically.

We also have an example code here. It runs facial cartoonization model (IR format) on the device using OpenVINOs
Inference Engine (IE).

This allows you to try out examples from OpenVINO directly as if our hardware is an NCS2. This can be useful
when experimenting with models which are designed to operate on objects/items that you may not have available
locally/physically. It also allows running inference in programmatic ways for quality assurance, refining model per-
formance, etc., as the images are pushed from the host, instead of pulled from the onboard camera in this mode.

Another common use case to run your model with IE (Inference Engine) first is to check if your model conversion to
OpenVINOs IR format (eg. from TF/ONNX) was successful. After you run it successfully with the IE you can then
proceed with compiling the IR model into the .blob, which is required by the DepthAI library.

4.7.41 What Information is Stored on the OAK cameras

All OAK-D (and newer OAK-1) cameras have on-board EEPROM that is used to save calibration data - things like
board revision, camera intrinsics/extrinsics/distortion coefficients, FOV, IMU extrinsics, stereo rectification data etc.
See Calibration reader API code on how to read this information from the OAK camera.

82 Chapter 4. Ecosystem

https://shop.luxonis.com/collections/poe
https://github.com/luxonis/depthai-experiments/tree/master/depthai-inference-engine
https://docs.openvinotoolkit.org/latest/openvino_docs_IE_DG_Deep_Learning_Inference_Engine_DevGuide.html
https://docs.luxonis.com/projects/api/en/latest/samples/calibration/calibration_reader/#calibration-reader

DepthAI Docs

4.7.42 Dual-Homography vs. Single-Homography Calibration

As a result of some great feedback/insight from the OpenCV Spatial AI Competition we discovered and implemented
many useful features (summary here).

Among those was the discovery that a dual-homography approach, although mathematically equivalent to a single-
homography (as you can collapse the two homographies into one) actually outperforms single-homography in real-
world practice.

As a result, we switched our calibration system in September 2020 to use dual-homography instead of single homog-
raphy. So any units produced after September 2020 include dual homography. Any units with single homography can
be recalibrated (see here) to use this updated dual-homography calibration.

4.7.43 How Do I Get Different Field of View or Lenses for DepthAI and megaAI?

ArduCam has built a variety of camera modules specifically for Luxonis’ devices, including a variety of M12-mount
options (so that the optics/view-angles/etc. are change-able by you the user).

See additional documentation here.

4.7.44 What are the Highest Resolutions and Recording FPS Possible with OAK
cameras?

OAK cameras can be used to stream raw/uncompressed video with USB3. Gen1 USB3 is capable of 5gbps and Gen2
USB3 is capable of 10gbps. All OAK cameras are capable of both Gen1 and Gen2 USB3 - but not all USB3 hosts will
support Gen2, so check your hosts specifications to see if Gen2 rates are possible.

Resolution USB3 Gen1 (5gbps) USB3 Gen2 (10gbps)
12MP (4056x3040) 21.09fps (390MB/s) 41.2fps (762MB/s)
4K (3840x2160) 30.01fps (373MB/s) 60.0fps (746MB/s)

OAK cameras can do h.264 and h.265 (HEVC) encoding on-device. The max resolution/rate is 4K at 30FPS. With the
default encoding settings on OAK camera, this brings the throughput down from 373MB/s (raw/unencoded 4K/30) to
3.125MB/s (h.265/HEVC at 25mbps bit rate). An example video encoded on OAK-D-CM3 is below:

4.7. FAQs & How-To 83

https://opencv.org/opencv-spatial-ai-competition/
https://github.com/luxonis/depthai/issues/183
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/calibration.html
https://www.arducam.com/product-category/opencv-ai-kit/
https://docs.luxonis.com/projects/hardware/en/latest/pages/arducam.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1097.html

DepthAI Docs

It’s worth noting that all OAK cameras (except Lite versions) share the same color camera specs and encoding capa-
bilities.

4.7.45 What are the theoretical maximum transmission rate for USB3 Gen1 and
Gen2?

The maximum bit rate (the PHY rate) for Gen1 is 5Gbps and for Gen2 is 10Gbps. But this is the line rate - meaning
purely how fast the bits can change from 0 to 1 and vice-versa. So above this, there is the USB encoding of the data,
and then above this the protocol that is being used.

This FAQ answers the maximum transmission rate of USB-encoded data being sent over USB3. Keep in mind that this
is prior to whatever protocol is being used over USB3 (e.g. USB Video Class (UVC), or XLink). Actual use of USB3
will always involve some form of protocol, which means the actual throughput will be lower than the following. And
the CPUs involved may not be able to handle this throughput and/or the handling of the protocol used above USB3 at
these rates.

So that is to say, this is the absolute maximum possible data transmission through USB3:

• Gen1 (8b/10b): 4Gbps (of 5Gbps PHY rate)

• Gen2 (128b/132b): 9.697Gbps (of 10Gbps PHY rate)

So interestingly, in Gen2 USB3, not only is the PHY rate 2x as high, the encoding overhead is significantly lower,
as in USB3 Gen1 - each 8 bits get 2 bits of encoding added on top, whereas in Gen2, this can be increased to 4 bits
of overhead for every 128bits of data. So in other words, in Gen1, 20% of what is being sent over the line is USB
overhead. And in Gen2, this USB encoding overhead can be reduced down from 20% to 3.03%.

84 Chapter 4. Ecosystem

https://www.youtube.com/watch?v=ZGERgBTS2T4

DepthAI Docs

4.7.46 What is the best way to get FullHD in good quality?

See RGB Full Resolution Saver sample code to save 4K .jpeg files to the host.

4.7.47 How to run OAK-D as video device

OAK cameras do not appear as standard webcam by default. To use it as a webcam, follow the tutorial here.

4.7.48 How Much Compute Is Available? How Much Neural Compute is Available?

OAKs are built around the Intel Movidius Myriad X. More details/background on this part are here and also here.

A brief overview of the capabilities of DepthAI/megaAI hardware/compute capabilities:

• Overall Compute: 4 Trillion Ops/sec (4 TOPS)

• Neural Compute Engines (2x total): 1.4 TOPS (neural compute only)

• 16x SHAVES: 1 TOPS available for additional neural compute or other CV functions (e.g. through
OpenCL)

• 20+ dedicated hardware-accelerated computer vision blocks including disparity-depth, feature match-
ing/tracking, optical flow, median filtering, Harris filtering, WARP/de-warp, h.264/h.265/JPEG/MJPEG
encoding, motion estimation, etc.

• 500+ million pixels/second total processing (see max resolution and frame rates over USB here)

• 450 GB/sec memory bandwidth

• 512 MB LPDDR4 (contact us for 1GB LPDDR version if of interest)

4.7.49 How are resources allocated? How do I see allocation?

• Resources are allocated automatically, based on the enabled nodes in the pipeline and their properties, before
starting the pipeline. If there are no available resources an error will be thrown.

• After distributing the SHAVE/CMX resources between nodes (except NN), NeuralNetwork receives the rest
of the free resources.

• There are 2 main CPUs, LeonOS and LeonRT, running Rtems OS, scheduling the tasks (USB, SHAVES, ISP
etc.).

• There are a total of 16 SHAVEs and 20 CMX slices, each slice 128KB, a total of 2.5MB, together with 512MB
DDR.

• CMXmemory is super-fast SRAM compared to DRAM (DDR), used by Hardware CV filters, SHAVEs for highest
performance and lowest latency.

• SHAVEs are accelerator processors for CV, NN algorithms.

The allocated resources can be printed with DEPTHAI_LEVEL environment variable set to INFO. For example:
DEPTHAI_LEVEL=info python3 26_1_spatial_mobilenet.py

• [system] [info] ImageManip internal buffer size ‘80640’B, shave buffer size ‘19456’B

• [system] [info] SpatialLocationCalculator shave buffer size ‘11264’B

• [system] [info] SIPP (Signal Image Processing Pipeline) internal buffer size ‘143360’B

• [system] [info] NeuralNetwork allocated resources: shaves: [0-12] cmx slices: [0-12]

4.7. FAQs & How-To 85

https://docs.luxonis.com/projects/api/en/latest/samples/VideoEncoder/rgb_full_resolution_saver/
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html
https://newsroom.intel.com/wp-content/uploads/sites/11/2017/08/movidius-myriad-xvpu-product-brief.pdf
https://www.anandtech.com/show/11771/intel-announces-movidius-myriad-x-vpu
https://docs.openvinotoolkit.org/2020.4/openvino_docs_IE_DG_Extensibility_DG_VPU_Kernel.html

DepthAI Docs

• [system] [info] ColorCamera allocated resources: no shaves; cmx slices: [13-15]

• [system] [info] MonoCamera allocated resources: no shaves; cmx slices: [13-15]

• [system] [info] StereoDepth allocated resources: shaves: [13-13] cmx slices: [13-15]

• [system] [info] ImageManip allocated resources: shaves: [15-15] no cmx slices.

• [system] [info] SpatialCalculator allocated resources: shaves: [14-14] no cmx slices.

• ImageManip node requires 80640+19456 bytes of CMX memory and shave 15.

• SpatialLocationCalculator node (used by SpatialDetectionNetwork requires 11264 bytes of
CMX memory and shave 15).

• SIPP (Signal Image Processing Pipeline) requires 143360 bytes of CMX memory, which is
used by stereo node, camera ISP.

• NeuralNetwork takes shaves [0-12] and cmx slices [0-12].

• ColorCamera takes cmx slices [13-15], a total of 3 at 1080p. At 4k/12MP it requires 6 slices.

• MonoCamera takes cmx slices [13-15].

• StereoDepth takes cmx slices [13-15] and shave 13.

Each node requires its own pools in the memory where data is stored. In addition to SHAVE and CMX distribution,
the CPU usage, DDR, CMX, heap memory allocations are exposed too at runtime.

• [system] [info] Memory Usage - DDR: 74.12 / 414.56 MiB, CMX: 2.37 / 2.50 MiB, LeonOS Heap: 32.72 /
46.36 MiB, LeonRT Heap: 5.20 / 27.45 MiB

• [system] [info] Temperatures - Average: 58.40 °C, CSS: 58.94 °C, MSS 58.30 °C, UPA: 59.36 °C, DSS: 57.01
°C

• [system] [info] Cpu Usage - LeonOS 55.29%, LeonRT: 34.93%

4.7.50 What Auto-Focus Modes Are Supported? Is it Possible to Control Auto-
Focus From the Host?

OAK-D, OAK-1, OAK-D-PoE, etc. all support continuous video autofocus (‘2’ below, where the system is constantly
autonomously searching for the best focus) and also and auto mode which waits to focus until directed by the host,
in addition to region-of-interest based focus, where the focus is automatically focused around a region provided to
DepthAI (e.g. from a neural network bounding box, or some other real-time or apriori setting).

• See here for an example of switching back/forth between autofocus and manual focus, and commanding specific
manual-focus positions.

• See here for autofocus controls, region of interest (to set autofocus to only consider a certain region), and
triggering.

• See here for the API for manually setting the focus level.

86 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/samples/ColorCamera/rgb_camera_control/#rgb-camera-control
https://docs.luxonis.com/projects/api/en/latest/references/python/#depthai.CameraControl
https://docs.luxonis.com/projects/api/en/latest/references/python/#depthai.CameraControl.setManualFocus

DepthAI Docs

4.7.51 What is the Hyperfocal Distance of the Auto-Focus Color Camera?

The hyperfocal distance is important, as it’s the distance beyond which everything is in good focus. Some refer to this
as ‘infinity focus’ colloquially.

The ‘hyperfocal distance’ (H) of OAK’s color camera module is quite close because of it’s f.no and focal length.

From WIKIPEDIA, here, the hyperfocal distance is as follows:

Where:

• f = 4.52mm (the ‘effective focal length’ of the camera module)

• N = 2.0 (+/- 5%, FWIW)

• c = C=0.00578mm (see here, someone spelling it out for the 1/2.3” format, which is the sensor format of the
IMX378)

4.7.52 Is it Possible to Control the Exposure and White Balance and Auto-Focus
(3A) Settings of the RGB Camera From the Host?

Auto-Focus (AF)

• See here for an example of switching back/forth between autofocus and manual focus, and commanding specific
manual-focus positions.

• See here for autofocus controls, region of interest (to set autofocus to only consider a certain region), and
triggering.

• See here for the API for manually setting the focus level.

Exposure (AE)

It is possible to set frame duration (us), exposure time (us), sensitivity (iso) via the API. See this example for controlling
exposure, and setting auto or manual for exposure.

White Balance (AWB)

See here for Auto White Balance modes and controls.

4.7.53 Is it possible to control exposure and ISO with separate cameras?

In situations where the surrounding brightness differs between cameras, it can be helpful to adjust ISO to help align
brightness levels.

The following settings over 3 cameras (B,C,D) have been successful for us:

cam['left'] .initialControl.setManualExposure(30000, 400)
cam['right'].initialControl.setManualExposure(15000, 400)
cam['camd'] .initialControl.setManualExposure(5000, 400)

4.7. FAQs & How-To 87

https://en.wikipedia.org/wiki/Hyperfocal_distance
https://sites.google.com/site/doftesting/
https://docs.luxonis.com/projects/api/en/latest/samples/ColorCamera/rgb_camera_control/#rgb-camera-control
https://docs.luxonis.com/projects/api/en/latest/references/python/#depthai.CameraControl
https://docs.luxonis.com/projects/api/en/latest/references/python/#depthai.CameraControl.setManualFocus
https://docs.luxonis.com/projects/api/en/latest/samples/ColorCamera/rgb_camera_control/#rgb-camera-control
https://docs.luxonis.com/projects/api/en/latest/references/python/#depthai.CameraControl.AutoWhiteBalanceMode

DepthAI Docs

Or

cam['left'] .initialControl.setManualExposure(20000, 1600)
cam['right'].initialControl.setManualExposure(20000, 800)
cam['camd'] .initialControl.setManualExposure(20000, 400)

Controlling separately at runtime is possible as well. In cam_test.py you will need to change from linking the same
control XLinkIn node to all cameras: control.out.link(cam[c].inputControl). This will separate control nodes per
camera.

Or, if you want to keep auto exposure, but just change some of the cameras to apply a different exposure compensation
(EV), can set values in the range -9 .. +9 (default is 0):

cam['left'] .initialControl.setAutoExposureCompensation(-3)
cam['right'].initialControl.setAutoExposureCompensation(1)
cam['camd'] .initialControl.setAutoExposureCompensation(6)

4.7.54 Am I able to attach alternate lenses to the camera? What sort of mounting
system? S mount? C mount?

The color camera on megaAI and DepthAI is a fully-integrated camera module, so the lens, auto-focus, auto-focus
motor etc. are all self-contained and none of it is replaceable or serviceable. You’ll see it’s all very small. It’s the same
sort of camera you would find in a high-end smartphone.

So the recommended approach, if you’d like custom optics, say IR-capable, UV-capable, different field of view (FOV),
etc. is to use the ArduCam M12 or CS mount series of OV9281 and/or IMX477 modules.

• IMX477 M12-Mount

• IMX477 CS-Mount

• OV9281 M12-Mount

Note that these require an adapter (here), and below and this adapter connects to the RGB port of the DepthAI FFC. It
is possible to make other adapters such that more than one of these cameras could be used at a time, or to modify the
open-source OAK-FFC-3P-OG to accept the ArduCam FFC directly, but these have not yet been made.

That said, we have seen users attach the same sort of optics that they would to smartphones to widen field of view,
zoom, etc. The auto-focus seems to work appropriately through these adapters. For example a team member has tested
the Occipital Wide Vision Lens here to work with both megaAI and DepthAI color cameras. (We have not yet tried on
the grayscale cameras.)

Also, see below for using DepthAI FFC with the Raspberry Pi HQ Camera to enable use of C- and CS-mount lenses.

4.7.55 Can I Power DepthAI Completely from USB?

So USB3 (capable of 900mA) is capable of providing enough power for the DepthAI models. However, USB2 (capable
of 500mA) is not. So on DepthAI models power is provided by the 5V barrel jack power to prevent situations where
DepthAI is plugged into USB2 and intermittent behavior occurs because of insufficient power (i.e. brownout) of the
USB2 supply.

To power your DepthAI completely from USB (assuming you are confident your port can provide enough power), you
can use this USB-A to barrel-jack adapter cable here. And we often use DepthAI with this USB power bank here.

88 Chapter 4. Ecosystem

https://www.arducam.com/product/arducam-high-quality-camera-for-jetson-nano-and-xavier-nx-12mp-m12-mount/
https://www.arducam.com/product/b0242-arducam-imx477-hq-camera/
https://www.arducam.com/product/ov9281-mipi-1mp-monochrome-global-shutter-camera-module-m12-mount-lens-raspberry-pi/
https://shop.luxonis.com/collections/all/products/rpi-hq-camera-imx477-adapter-kit
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098FFC.html
https://github.com/luxonis/depthai-hardware/tree/master/BW1098FFC_DepthAI_USB3
https://store.structure.io/buy/accessories
https://www.amazon.com/gp/product/B01MZ0FWSK/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B0194WDVHI/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

DepthAI Docs

4.7.56 What is the Screw Mount Specification on OAK-1 and OAK-D?

It is the standard 1/4-20 “Tripod” mount used on most cameras. More information on this type of mount on Wikipedia
here.

4.7.57 How to use DepthAI under VirtualBox

If you want to use VirtualBox to run the DepthAI source code, please check our tutorial here.

4.7.58 What are the SHAVES?

The SHAVES are vector processors in DepthAI/OAK. The 2x NCE (neural compute engines) were architected for a
slew of operations, but there are some that are not implemented. So the SHAVES take over these operations.

These SHAVES are also used for other things in the device, like handling reformatting of images, doing some ISP, etc.

So the higher the resolution, the more SHAVES are consumed for this.

• For 1080p, 13 SHAVES (of 16) are free for neural network stuff.

• For 4K sensor resolution, 10 SHAVES are available for neural operations.

There is an internal resource manager inside DepthAI firmware that coordinates the use of SHAVES, and warns if too
many resources are requested by a given pipeline configuration.

4.7.59 How to increase SHAVES parameter?

We have implemented the -sh command line param in our example script. Just follow the instructions on DepthAI
repository and do

python3 depthai_demo.py -sh 9

And it will run the default MobilenetSSD, compiled to use 9 SHAVEs. Note that the allowed shave value can vary
depending on the amount of features enabled, but cannot be greater than 16, so you cannot use 17 or more
SHAVEs, and the more features are enabled (like ImageManips or VideoEncoders) the less SHAVEs will be available
for NeuralNetwork node.

You can try compiling the model yourself either by following local OpenVINO model conversion tutorial or by using
our online Myriad X blob converter. For more info, please see Converting model to MyriadX blob

4.7.60 Can I Use DepthAI with the New Raspberry Pi HQ Camera?

This is a particularly interesting application of DepthAI, as it allows the Arducam IMX477 HQ Camera (alternative to
RPi HQ cam) to be encoded to h.265 4K video (and 12MP stills) even with a Raspberry Pi 1 or Raspberry Pi Zero -
because OAK camera does all the encoding onboard - so the Pi only receives a 3.125 MB/s encoded 4K h.265 stream
instead of the otherwise 373 MB/s 4K RAW stream coming off the IMX477 directly (which is too much data for the
Pi to handle, and is why the Pi when used with the Arducam HQ camera directly, can only do 1080p video and not 4K
video recording).

OAK-FFC-3P and OAK-FFC-4P will work with** the Arducam IMX477 HQ Camera without an adapter board,
as you can connect the camera via the 22-26 pin adapter cable (SKU: A00403, which you get with the OAK-FFC-
3P/OAK-FFC-4P) to the FFC baseboard.

4.7. FAQs & How-To 89

https://en.wikipedia.org/wiki/Tripod_(photography)
https://docs.luxonis.com/projects/api/en/latest/install/#virtual-box
https://github.com/luxonis/depthai
https://github.com/luxonis/depthai
https://docs.luxonis.com/projects/api/en/latest/tutorials/local_convert_openvino/
https://blobconverter.luxonis.com/
https://www.arducam.com/product/b0240-arducam-imx477-hq-quality-camera/
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/raspberrypi.html#raspberry-pi-zero
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM1090.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/DD2090.html
https://www.arducam.com/product/b0240-arducam-imx477-hq-quality-camera/

DepthAI Docs

OAK-FFC-3P-OG model also works with Raspberry Pi HQ cam via an adapter board (IMX477 based), which
then does work with a ton of C- and CS-mount lenses (see here). And see here for the adapter board for OAK-FFC-
3P-OG.

90 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098FFC.html
https://www.raspberrypi.org/blog/new-product-raspberry-pi-high-quality-camera-on-sale-now-at-50/
https://github.com/luxonis/depthai-hardware/tree/master/BW0253_R0M0E0_RPIHQ_ADAPTER

DepthAI Docs

4.7. FAQs & How-To 91

DepthAI Docs

You can buy this adapter kit for the OAK-FFC-3P-OG here

92 Chapter 4. Ecosystem

https://www.youtube.com/watch?v=KsK-XakrpK8
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098FFC.html
https://shop.luxonis.com/products/rpi-hq-camera-imx477-adapter-kit

DepthAI Docs

4.7.61 Can I use DepthAI with Raspberry Pi Zero?

Yes, DepthAI is fully functional on it, additional documentation here.

4.7.62 How Much Power Does the DepthAI Raspberry Pi CME Consume?

The OAK-D-CM3 for short consumes around 2.5W idle and 5.5W to 6W when DepthAI is running full-out.

• Idle: 2.5W (0.5A @ 5V)

• DepthAI Full-Out: 6W (1.2A @ 5V)

Below is a quick video showing this:

4.7.63 A strange noise pattern appears on the OAK-D Lite (RGB), how do I resolve
this?

When acquiring images with OAK-D Lite a strange noise pattern appears on RGB images. Left and right cameras
are 480p, RGB image camera is 12mp with a preview size of 3840x2160. Those artifacts are related to ISP sharp-
ness/denoise operations. These settings should reduce them:

camRgb.initialControl.setSharpness(0)
camRgb.initialControl.setLumaDenoise(0)
camRgb.initialControl.setChromaDenoise(4)

4.7. FAQs & How-To 93

https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/raspberrypi.html#raspberry-pi-zero
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1097.html
https://www.youtube.com/watch?v=zQtSzhGR6Xg

DepthAI Docs

4.7.64 How To Unbind and Bind a Device?

In some cases, you may need to unbind and bind your device, i.e. a controller crashes with the following error
messages:

[345692.730104] xhci_hcd 0000:02:00.0: xHCI host controller not responding, assume
→˓dead
[345692.730113] xhci_hcd 0000:02:00.0: HC died; cleaning up

or you encounter error, such as:

RuntimeError: Failed to find device after booting, error message: X_LINK_DEVICE_NOT_
→˓FOUND

or

Cannot enable. Maybe the USB cable is bad?

Instead of rebooting a host, you may unbind and bind a device.

Note! You’ll need to know the PCI ID of the USB host controller to replace the “0000:00:14.0” part from the command
below.

echo -n "0000:00:14.0" | sudo tee /sys/bus/pci/drivers/xhci_hcd/unbind; sleep 1; echo
→˓-n "0000:00:14.0" | sudo tee /sys/bus/pci/drivers/xhci_hcd/bind

4.7.65 How Do I Get Shorter or Longer Flexible Flat Cables (FFC)?

For all cameras we use a 0.5mm 26-pin, same-side 152 mm contact flex cable. Follow the link for more details.

4.7.66 What are CSS MSS UPA and DSS Returned By meta_d2h?

• CSS: CPU SubSystem (main cores)

• MSS: Media SubSystem

• UPA: Microprocessor(UP) Array – Shaves

• DSS: DDR SubSystem

4.7.67 Where are the Github repositories? Is DepthAI Open Source?

DepthAI is an open-source platform across a variety of stacks, including hardware (electrical and mechanical), soft-
ware, and machine-learning training using Google Colab.

See below for the pertinent Github repositories:

94 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/DM1090.html#ffc-cables

DepthAI Docs

Overall

• https://github.com/luxonis/depthai-hardware - DepthAI hardware designs themselves.

• https://github.com/luxonis/depthai - DepthAI demo app and DepthAI SDK

• https://github.com/luxonis/depthai-python - Python API

• https://github.com/luxonis/depthai-api - C++ Core and C++ API

• https://github.com/luxonis/depthai-ml-training - Online AI/ML training leveraging Google Colab (so it’s free)

• https://github.com/luxonis/depthai-experiments - Experiments showing how to use DepthAI.

Embedded Use Case

Standalone docs here.

The above examples include a few submodules of interest. You can read a bit more about them in their respective
README files:

• https://github.com/luxonis/depthai-bootloader-shared - Bootloader source code which allows programming
NOR flash of DepthAI to boot autonomously

• https://github.com/luxonis/depthai-spi-api - SPI interface library for Embedded (microcontroller) DepthAI ap-
plication

• https://github.com/luxonis/esp32-spi-message-demo - ESP32 Example applications for Embedded/ESP32
DepthAI use

4.7.68 How Do I Build the C++ API?

Prebuilt binaries are available for Python bindings (or so called wheels).

We do not have prebuilt binaries for C++ core library.

One of the reasons is the vast number of different platforms and the second is that the library itself is quite lean so
compiling along the other C++ source should not be a problem.

To compile the needed headers and a .dll follow this link: https://github.com/luxonis/depthai-core/tree/main#
building Under - And for the dynamic version of the library

You can optionally also install it into a desired directory by appending this cmake flag:

cmake -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=[desired/installation/path]
And then calling the install target
cmake --build . --target install

This should result in the headers and the library being copied to that path.

Another option is integrating into your CMake project directly, for that see: https://github.com/luxonis/
depthai-core-example

And a note on building for Windows: Windows does not use libusb, but rather uses Windows internal winusb.

4.7. FAQs & How-To 95

https://github.com/luxonis/depthai-hardware
https://github.com/luxonis/depthai
https://github.com/luxonis/depthai-python
https://github.com/luxonis/depthai-api
https://github.com/luxonis/depthai-ml-training
https://github.com/luxonis/depthai-experiments
https://docs.luxonis.com/projects/api/en/latest/tutorials/standalone_mode/
https://github.com/luxonis/depthai-bootloader-shared
https://github.com/luxonis/depthai-spi-api
https://github.com/luxonis/esp32-spi-message-demo
https://github.com/luxonis/depthai-core/tree/main#building
https://github.com/luxonis/depthai-core/tree/main#building
https://github.com/luxonis/depthai-core-example
https://github.com/luxonis/depthai-core-example

DepthAI Docs

4.7.69 Can I Use an IMU With DepthAI?

Yes, all of our System on Modules have software support for both 9-axis BNO086 (and BNO080/BNO085) and 6-axis
BMI270 IMU. See IMU documentation here.

4.7.70 Can I Use Microphones with DepthAI?

Yes.

• The OAK-SoM-Pro SoM supports up to 3x I2S stereo inputs (up to 6x physical microphones) and one I2S stereo
output (e.g. for a stereo speaker drive).

• Any I2S mics should work, and may be possible to also use audio codecs, but those might need extra I2C config.

• It is important to note that the OAK-SoM and OAK-SoM-IoT do not have I2S support.

We have tested audio input on the OAK-SoM-Pro using 3x CMM-4030D-261-I2S-TR and have found the audio quality
to be good. Theoretically many other microphones should work, however we have not tested audio output.

4.7.71 Where are Product Brochures and/or Datasheets?

These can be found at DepthAI Hardware documentation.

4.7.72 How Much Does OAK Devices Weight?

Every OAK model’s weight is specified in the DepthAI Hardware documentation.

4.7.73 How Can I Cite Luxonis Products in Publications?

If DepthAI and OAK-D products has been significantly used in your research and if you would like to acknowledge
the DepthAI and OAK-D in your academic publication, we suggest citing them using the following bibtex format.

@misc{DepthAI,
title={ {DepthAI}: Embedded Machine learning and Computer vision api},
url={https://luxonis.com/},
note={Software available from luxonis.com},
author={luxonis},
year={2020},
}

@misc{OAK-D,
title={ {OAK-D}: Stereo camera with Edge AI},
url={https://luxonis.com/},
note={Stereo Camera with Edge AI capabilities from Luxonis and OpenCV},
author={luxonis},
year={2020},
}

96 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/#system-on-module-designs
https://docs.luxonis.com/projects/api/en/latest/components/nodes/imu/
https://github.com/luxonis/depthai-hardware/blob/master/SoMs/OAK-SoM-Pro/OAK-SoM-Pro_Datasheet.pdf
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1099.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW2099.html
https://www.cuidevices.com/product/audio/microphones/mems-microphones/cmm-4030d-261-i2s-tr
https://docs.luxonis.com/projects/hardware/en/latest/
https://docs.luxonis.com/projects/hardware/en/latest/

DepthAI Docs

4.7.74 Where can I find your Logo?

You can find official Luxonis logo here.

4.7.75 How Do I Talk to an Engineer?

At Luxonis we firmly believe in the value of customers being able to communicate directly with our engineers. It
helps our engineering efficiency. And it does so by making us make the things that matter, in the ways that matter (i.e.
usability in the right ways) to solve real problems.

As such, we have many mechanisms to allow direct communication:

• discuss.luxonis.com. Use this for starting any public discussions, ideas, product requests, support requests
etc. or generally to engage with the Luxonis Community. While you’re there, check out this awesome
visual-assistance device being made with DepthAI for the visually-impaired, here.

• Luxonis Github. Feel free to make Github issues in any/all of the pertinent repositories with questions,
feature requests, or issue reports. We usually respond within a couple hours (and often w/in a couple
minutes). For a summary of our Github repositories, see here.

4.8 OAK as a webcam

OAK devices can be used as webcams as well. Make sure to use USB3 cable, as we have noticed that in some cases,
USB2 won’t work.

4.8.1 Using UVC

Skip cloning if you already have depthai-python repo
git clone https://github.com/luxonis/depthai-python.git
cd depthai-python
python3 examples/install_requirements.py
python3 examples/UVC/uvc_rgb.py

Now you can open up your favorite meeting app, like Zoom or Slack, and select Luxonis Device: UVC Video Contr
in the webcam selection menu.

4.8.2 Webcam workarounds

There are currently a few issues with the approach above. Even on Linux, UVC node currently doesn’t work for all
apps. Since UVC stands for USB Video Class, using UVC pipeline on OAK POE models won’t work. Another
known issue is using UVC pipeline on Windows, as it doesn’t work due to UVC descriptors. Here are workarounds:

1. Python virtual camera

One option is to use virtual camera, such as the pyvirtualcam module. You would need to pip install the package and
install it’s dependencies (as mentioned in the link). Here’s a demo code:

import pyvirtualcam
import depthai as dai
Create pipeline
pipeline = dai.Pipeline()
cam = pipeline.create(dai.node.ColorCamera)

(continues on next page)

4.8. OAK as a webcam 97

https://www.luxonis.com/marketing
https://discuss.luxonis.com/
https://discuss.luxonis.com/d/40-questions-re-depthai-usb3-ffc-edition-cameras
https://github.com/luxonis
https://pypi.org/project/pyvirtualcam/

DepthAI Docs

(continued from previous page)

cam.setColorOrder(dai.ColorCameraProperties.ColorOrder.RGB)
cam.setPreviewSize(1280,720)
xout = pipeline.create(dai.node.XLinkOut)
xout.setStreamName("rgb")
cam.preview.link(xout.input)
Connect to device and start pipeline
with dai.Device(pipeline) as device, pyvirtualcam.Camera(width=1280, height=720,
→˓fps=20) as uvc:

qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
print("UVC running")
while True:

frame = qRgb.get().getFrame()
uvc.send(frame)

2. OBS forwarding UVC stream

We have noticed that on some apps, like Discord or Google Meet, Luxonis Device: UVC won’t work. One
workaround is to use OBS to proxy the stream and use the virtual camera inside the OBS. I am running Linux so
I had to install sudo apt install v4l2loopback-dkms for the virtual camera to work (this is also men-
tioned in install instructions).

This video will show you how to do just that.

3. OBS capturing cv2 window

Another solution is to stream the video to the host, and capture the cv2.imshow window inside the OBS:

• Inside depthai-python repo, run python3 examples/ColorCamera/rgb_video.py. This will open a
new window where 1080P video stream will be shown.

• Inside OBS, under Sources menu, click +, Add new source

• Click on Window Capture (Xcomposite) option. Then select video

• You can then click on Start Video Camera inside OBS (just like in the video above), to use the video from
OAK POE model as a webcam source.

4.9 Troubleshooting

4.9.1 DepthAI can’t connect to an OAK camera

For USB OAK cameras, DepthAI can throw an error code like X_LINK_COMMUNICATION_NOT_OPEN or
X_LINK_ERROR, which is usually a sign of a bad USB3 cable (or a USB2 cable). If you are using USB2 cable
(and want USB2 bandwidth), you have to specify USB2 protocol, see Forcing USB2 Communication for more infor-
mation. Another common issue is that users haven’t set udev rules on their Linux machine.

If you still can’t connect to the OAK camera, you should execute lsusb | grep 03e7. You should see a similar
line:

$ lsusb | grep 03e7
Bus 001 Device 120: ID 03e7:2485 Intel Movidius MyriadX

Another thing to check is the dmesg -w. After executing that and pressing enter a few times (for separator), connect
your OAK camera to the host. You should see a similar output in the terminal:

98 Chapter 4. Ecosystem

https://obsproject.com/
https://obsproject.com/wiki/install-instructions#linux

DepthAI Docs

/~$ dmesg -w

[223940.862544] usb 1-3.2: new high-speed USB device number 120 using xhci_hcd
[223940.963357] usb 1-3.2: New USB device found, idVendor=03e7, idProduct=2485,
→˓bcdDevice= 0.01
[223940.963364] usb 1-3.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[223940.963368] usb 1-3.2: Product: Movidius MyriadX
[223940.963371] usb 1-3.2: Manufacturer: Movidius Ltd.
[223940.963373] usb 1-3.2: SerialNumber: 03e72485

For PoE OAK cameras, see PoE Troubleshooting page.

If these commands didn’t return the expected log, see Support page.

4.9.2 Reporting firmware crash dump

On our latest develop branch (to be released on version 2.21) of depthai API we have added crash dump feature.
Steps to create a crash dump:

1. [Prerequisite] Have correct depthai version installed. Checkout to develop branch and execute this file by
running python3 examples/install_requirements.py

2. Run a code that causes the firmware crash

3. On depthai-python repo, execute this file by running python3 examples/CrashReport/
crash_report.py

Afterwards, please send the generated .txt file to us (email/github/forum), and our development team will try to fix the
cause of the crash as soon as possible.

4.9.3 Ping was missed, closing the device connection

[host] [warning] Monitor thread (device: 194435108198757340 [169.254.1.222]) - ping
→˓was missed, closing the device connection

This error is mostly seen on POE cameras, and can sometimes occur after a few hours or even days of running the
pipeline. It happens because device doesn’t reply to ping messages, which usually happens if device is too busy (high
CPU consumption), or there’s a networking issue. Potential solutions include:

1. Lower OAK CPU consumption

If CPU usage is above 95% that can be a bad sign. You can measure CPU usage by running the depthai
in debug mode. A few options to reduce CPU consumption are:

• lower 3A FPS

• Update networking settings on host computer - using ethtool, some have reported that increasing
rx-usecs from 0 to 400 decreased Leon CPU usage from 99% to 93%

• Reducing the pipeline / resolution / FPS, so there’s less computation happening on the camera

2. Increasing watchdog timeout

Another solution is to increase watchdog timeout, so it isn’t as “trigger happy”. Default value for POE
devices is 4000 ms, and user can set it to 4500ms (max value). This can be done by setting environmental
variable DEPTHAI_WATCHDOG, so for example on linux: DEPTHAI_WATCHDOG=4500 python3
my_app.py.

3. Implementing re-connection

4.9. Troubleshooting 99

https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html#poe-troubleshooting
https://github.com/luxonis/depthai-python/blob/develop/examples/install_requirements.py
https://github.com/luxonis/depthai-python/blob/develop/examples/CrashReport/crash_report.py
https://docs.luxonis.com/projects/api/en/latest/tutorials/debugging/#depthai-debugging-level
https://docs.luxonis.com/projects/api/en/latest/tutorials/debugging/#cpu-usage

DepthAI Docs

This would be quite recommended, as it would allow the application to recover from the error. So whenever there’s an
error, re-connect to the device and continue running the pipeline.

For depthai API, this could be implemented as:

pipeline = dai.Pipeline()
...
while True:

Every time it crashes, re-initialize the device and upload the pipeline to it
with dai.Device(pipeline) as device:
queue = device.getOutputQueue("name")
while True:

q.get()

4. Standalone mode

If you run your device in Standalone mode and communicate with it via networking protocols
(TCP/UDP/HTTP/MQTT) and not XLink, there’s no ping mechanism, so this error won’t occur. If there were
an issue on device side (which is why we have watchdog in the first place), device would auto-restart.

4.9.4 ImportError: No module named ‘depthai’

This indicates that the depthai was not found by your python interpreter. There are a handful of reasons this can
fail:

1. Is the Python API installed? Verify that it appears when you type:

python3 -m pip list | grep depthai

2. Are you using a supported platform for your operating system? If not, you can always install from source:

cat /etc/os-release

4.9.5 Why is the Camera Calibration running slow?

Poor photo conditions can dramatically impact the image processing time) during the camera calibration. Under
normal conditions, it should take 1 second or less to find the chessboard corners per-image on an Raspberry Pi but this
exceed 20 seconds per-image in poor conditions. Tips on setting up proper photo conditions:

• Ensure the checkerboard is not warped and is truly a flat surface. A high-quality option: print the checkerboard
on a foam board.

• Reduce glare on the checkerboard (for example, ensure there are no light sources close to the board like a desk
lamp).

• Reduce the amount of motion blur by trying to hold the checkerboard as still as possible.

100 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/tutorials/standalone_mode/
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe/#video-streaming-with-oak
https://docs.luxonis.com/projects/api/en/latest/install/
https://docs.luxonis.com/projects/api/en/latest/install/#supported-platforms
https://docs.luxonis.com/projects/api/en/latest/install/#install-from-source
https://stackoverflow.com/questions/51073309/why-does-the-camera-calibration-in-opencv-python-takes-more-than-30-minutes
https://discuss.luxonis.com/d/38-easy-calibration-targets-for-depthai-opencv-checkerboard
https://discuss.luxonis.com/d/38-easy-calibration-targets-for-depthai-opencv-checkerboard

DepthAI Docs

4.9.6 Permission denied error

If python3 -m pip install fails with a Permission denied error, your user likely doesn’t have permis-
sion to install packages in the system-wide path.

[Errno 13] Permission denied: '/usr/local/lib/python3.7/dist-packages/...'

Try installing in your user’s home directory instead by adding the --user option. For example:

python3 -m pip install depthai --user

More information on Stackoverflow.

4.9.7 DepthAI does not show up under /dev/video* like web cameras do. Why?

The USB device enumeration could be checked with lsusb | grep 03e7 . It should print:

• 03e7:2485 after reset (boot loader running)

• 03e7:f63b after the application was loaded

No /dev/video* nodes are created. See OAK as a webcam if you would like to use OAK camera as a webcam.

4.9.8 Intermittent Connectivity with Long (2 meter) USB3 Cables

We’ve found that some hosts have trouble with long USB3 cables (above 6ft/2m). It seems to have something to do
with the USB controller on the host side. For example, all Apple computers we’ve tested with have never exhibited
the problem, as Apple computers have powerful USB controllers.

So, if you experience this problem with your host, there are potentially 3 options:

1. Switching to a shorter USB3 cable (say 1 meter) will very likely make the problem disappear. These 1 meter
(3.3 ft.) cables are a nice length and are shipped with OAK USB3 variants.

2. Force USB2 mode. This will allow use of the long cable still, and many DepthAI use cases do not necessitate
USB3 communication bandwidth - USB2 is plenty.

3. Use Active USB3 cable. We have tested this 10m active cable and USB3 works as expected (even without
powering the repeater).

Note that Ubuntu 16.04 has an independent USB3 issue, seemingly only on new machines though. We think this has
to do w/ Ubuntu 16.04 being EOLed prior to or around when these new machines hit the market. For example, this
computer (here) has rampant USB3 disconnect issues under Ubuntu 16.04 (with a 1 meter cable), but has none under
Ubuntu 18.04 (with a 1 meter cable).

4.9.9 Forcing USB2 Communication

If you aren’t using a (working) USB3 cable or your host computer doesn’t support USB3, you should force the USB2
communication. It’s also recommended to use USB2 communication if you are using a longer USB cable (2m+).

For API usage, set the maxUsbSpeed=dai.UsbSpeed.HIGH when creating the dai.Device object

Force USB2 communication
with dai.Device(pipeline, maxUsbSpeed=dai.UsbSpeed.HIGH) as device:

...

If you are using depthai_demo you can specify USB speed with -usbs argument:

4.9. Troubleshooting 101

https://stackoverflow.com/questions/31512422/pip-install-failing-with-oserror-errno-13-permission-denied-on-directory
https://www.amazon.com/gp/product/B07S4G4L4Z/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.cablematters.com/blog/USB-C/active-usb-extension-cable
https://www.amazon.de/-/en/dp/B08T5J3JZ3/ref=twister_B08T61LMP8?_encoding=UTF8&psc=1
https://pcpartpicker.com/list/KTDFQZ
https://github.com/luxonis/depthai

DepthAI Docs

python3 depthai_demo.py -usbs usb2

4.9.10 Output from DepthAI keeps freezing

If the output from the device keeps freezing every few seconds, there may be a problem with the USB3 connection
and forcing the device into USB2 mode could resolve this issue - instructions are in the chapter above.

When connection speed is USB2 (due to some hosts - Windows in particular - or USB controller/port/cable being
USB2) - initialization of USB3-enabled firmware or streaming after a few frames may fail. The workaround here is to
force the device to use the USB2-only firmware (mentioned in the chapter above).

4.9.11 DepthAI freezes after a few frames

If your app freezes and you don’t get any new messages from the device after a few messages (eg. 4 frames) after
booting, it’s likely that queues filled up and were set to blocking mode. Additional details on node queues (on the
OAK device) can be found here. We also recommend using Pipeline Graph tool to quikcly check if there is something
wrong with the pipeline (eg. a node that isn’t connected to anything).

4.9.12 Udev rules on Linux

• Failed to boot the device: 1.3-ma2480, err code 3

• Failed to find device (ma2480), error message: X_LINK_DEVICE_NOT_FOUND

• [warning] skipping X_LINK_UNBOOTED device having name "<error>"

• Insufficient permissions to communicate with X_LINK_UNBOOTED device with
name "1.1". Make sure udev rules are set

If you are getting any of the errors above, it’s most likely that udev rules are not set on your Linux machine.

To fix this, set the udev rules using the commands below, unplugging DepthAI and then plugging it back into USB
afterwards.

echo 'SUBSYSTEM=="usb", ATTRS{idVendor}=="03e7", MODE="0666"' | sudo tee /etc/udev/
→˓rules.d/80-movidius.rules
sudo udevadm control --reload-rules && sudo udevadm trigger

4.9.13 CTRL-C Is Not Stopping It!

If you are trying to kill a program with CTLR-C, and it’s not working, try CTRL-\ instead. Usually this will work.

4.9.14 Nothing happening when running a DepthAI script

If upon running a DepthAI script, nothing happens (the script just hangs) and you cannot CTRL-C out of it. Try
running cam_test.py script from the depthai-python/utilities folder. The script should error out with
something like:

102 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/components/device/#blocking-behaviour
https://github.com/geaxgx/depthai_pipeline_graph

DepthAI Docs

QObject::moveToThread: Current thread (0x55b9d0a00320) is not the object's thread
→˓(0x55b9d0cad7e0).
Cannot move to target thread (0x55b9d0a00320)

.

.

.

Aborted (Signal sent by tkill() 32104 1001)
Aborted (core dumped)

This means there is a problem with PyQt5 installation. Follow this issue for a resolution.

4.9.15 “DLL load failed while importing cv2” on Windows

If you are seeing the following error after installing DepthAI for Windows:

(venv) C:\Users\Context\depthai>python depthai_demo.py
Traceback (most recent call last):
File "C:\Users\Context\depthai\depthai_demo.py", line 7, in <module>

import cv2
File "C:\Users\Context\depthai\venv\lib\site-packages\cv2__init__.py", line 5, in

→˓<module>
from .cv2 import *

ImportError: DLL load failed while importing cv2: The specified module could not be
→˓found.

Then installing the Windows Media Feature Pack (here) is often the resolution, as Media Feature Pack must be installed
for Windows 10 N editions.

(And more background from OpenCV directly is here)

4.9.16 python3 depthai_demo.py returns Illegal instruction

This so far has always meant there is a problem with the OpenCV install on the host (and not actually with the depthai
library). To check this, run:

python3 -c "import cv2; import numpy as np; blank_image = np.zeros((500,500,3), np.
→˓uint8); cv2.imshow('s', blank_image); cv2.waitKey(0)"

If a window is not displayed, or if you get the Illegal instruction result, this means there is a problem with
the OpenCV install. The installation scripts here often will fix the OpenCV issues. But if they do not, running

python3 -m pip install opencv-python --force-reinstall

will often fix the OpenCV problem.

4.9. Troubleshooting 103

https://github.com/wkentaro/labelme/issues/842
https://support.microsoft.com/en-us/help/3145500/media-feature-pack-list-for-windows-n-editions
https://github.com/skvark/opencv-python/blob/master/README.md#:~:text=Q%3A%20Import%20fails%20on%20Windows%3A%20ImportError%3A%20DLL%20load%20failed%3A%20The%20specified%20module%20could%20not%20be%20found.%3F
https://docs.luxonis.com/en/latest/pages/api/#supported-platforms

DepthAI Docs

4.9.17 Neural network blob compiled with incompatible openvino version

[NeuralNetwork(2)] [error] Neural network blob compiled with incompatible openvino
→˓version. Selected openvino version 2020.3. If you want to select an explicit
→˓openvino version use: setOpenVINOVersion while creating pipeline

The reason for this error is that depthai can’t resolve the OpenVINO version from the blob. The solution is simple, the
user has to specify the OpenVINO version with which the blob was compiled (as mentioned in the error message):

pipeline = depthai.Pipeline()
Set the correct version:
pipeline.setOpenVINOVersion(depthai.OpenVINO.Version.VERSION_2021_1)

4.9.18 “realloc(): invalid pointern Aborted” on RPi

On RPi, after running sudo apt upgrade, you might get the error realloc(): invalid pointer\n
Aborted when importing cv2 after depthai library. We have observed the same issue, and have found a solution:

• Downgrade libc6 by running sudo apt install -y --allow-downgrades libc6=2.
28-10+rpi1, OR

• Re-install DepthAI dependencies by running sudo curl -fL http://docs.luxonis.com/
_static/install_dependencies.sh | bash

4.9.19 [error] Attempted to start camera - NOT detected!

If you are facing any of the errors above for either Mono Left/Right or Color camera, first try using the latest depthai
version (python3 -mpip install depthai -U). If that doesn’t help, there are 2 probable causes:

• You are using OAK FFC and a camera sensor that isn’t supported by default, so you should use a different
branch, see docs here.

• A camera got disconnected during the shipping. This has been reported only a handful of times, but it’s possible.

The solution here is to open up the enclosure and re-attach the connector to the camera, see the image here for the
OAK-D (left mono camera not detected).

4.9.20 [error] input tensor exceeds available data range

[NeuralNetwork(3)] [error] Input tensor '0' (0) exceeds available data range. Data
→˓size (6336B), tensor offset (0), size (6912B) - skipping inference

This error is usually thrown when we use NNData message and we don’t provide the amount of bytes that the NN
model expects for the inference. For example, in the error above, the NN model expects 6912 bytes (48x48x3), but
only 6336 bytes were sent to it.

104 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/supported_sensors.html#supported-sensors
https://github.com/luxonis/depthai-hardware/issues/224#issue-1166269781

DepthAI Docs

4.9.21 Converting YUV420 to CV2 frame

If you try to convert YUV420 frame to CV using ImgFrame’s .getCvFrame() method, you might come accross
the error below:

cv2.error: OpenCV(4.6.0) d:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\
→˓color.simd_helpers.hpp:108: error:
(-215:Assertion failed) sz.width % 2 == 0 && sz.height % 3 == 0 in function
'cv::impl::`anonymous-namespace'::CvtHelper<struct cv::impl::`anonymous namespace'::Set
→˓<1,-1,-1>,
struct cv::impl::A0xe823dd8f::Set<3,4,-1>,struct cv::impl::A0xe823dd8f::Set<0,-1,-1>,
→˓1>::CvtHelper'

The culprit of the error is that OpenCV requires YUV420 width to be divisible by 2, and height to be divisible by 3.
A simple example that will crash:

1 import depthai as dai
2 import cv2
3

4 pipeline = dai.Pipeline()
5 cam = pipeline.createColorCamera()
6

7 manip = pipeline.createImageManip()
8 # manip.initialConfig.setFrameType(dai.RawImgFrame.Type.BGR888p)
9 manip.initialConfig.setResize(600, 451)

10 cam.isp.link(manip.inputImage)
11

12 xout = pipeline.createXLinkOut()
13 xout.setStreamName("out")
14 manip.out.link(xout.input)
15

16 with dai.Device(pipeline) as device:
17 f = device.getOutputQueue('out').get().getCvFrame()
18 cv2.imshow("frame", f)
19 cv2.waitKey(0)

Since isp output is YUV420, it will crash when calling .getCvFrame(). You could either resize the frame to
600x450 (so height is divisible by 3) on line 9, or uncomment the line 8, so frame gets converted to BGR on the device
itself.

4.10 SLAM with OAK

On-board localization (VIO) and SLAM (Simultaneous Localization And Mapping) on current OAK cameras (RVC2)
aren’t yet supported.

Our upcoming Series 3 OAK cameras with RVC3 have Quad-core ARM A53 1.5GHz integrated into the VPU. There
will be an open-source SLAM implementation on the RVC3. Users are be able to run custom containarized apps on
the ARM, which will allow other companies (which specialize in VIO/SLAM) to port their software stacks to our
cameras and license it.

Several SLAM and localization projects that support OAK-D cameras:

• ORB SLAM3 with an OAK-D and ROS1 by @nimda

• RTAB-Map recently (PR here) added support for depthai and OAK cameras (via ROS)

• SpectacularAI’s SLAM with OAK-D - Free for non-commercial use

4.10. SLAM with OAK 105

https://docs.luxonis.com/projects/api/en/latest/components/messages/img_frame/
https://en.wikipedia.org/wiki/Visual_odometry
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s3.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc3.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s3.html#quad-core-arm
https://docs.luxonis.com/projects/hardware/en/latest/pages/articles/oak-s3.html#custom-applications
https://qiita.com/nindanaoto/items/20858eca08aad90b5bab
https://github.com/introlab/rtabmap
https://github.com/introlab/rtabmap/pull/696
https://twitter.com/oseiskar/status/1536344550305763328?s=20&t=YY432W59nsZd6_IhhfBW4A

DepthAI Docs

• ArduCam Visual SLAM tutorial

• DepthAI-SLAM

• On-device NN inferencing for localization

4.10.1 On-device SuperPoint for localization and SLAM

A customer shared with us a solution that was running the SuperPoint (Github repo, Arxiv paper) feature extraction
NN on-device (on RVC2-based OAK-D) and then used the features for localization and SLAM (on the host computer).

4.10.2 RAE on-device VIO & SLAM

The demo below shows how you can run on-device VIO & SLAM on the RAE robot using Spectacular AI SDK.
Disparity matching and feature extraction + tracking are done on accelerated blocks on the RVC3 chip. Features are
then combined with disparity to provide tracked 3D points used by VO, and Spectacular AI SDK fuses that with IMU
data to provide accurate localization of the robot.

4.10.3 Syncing frames and IMU messages

For VIO/SLAM solutions, you would want to sync IMU messages with the middle of the exposure. For exposure
timings and timestamps, see Frame capture graphs for details. See here for IMU/frame syncing demo.

Some more advance algorithms weight multiple IMU messages (before/after exposure) and interpolate the final value.

4.11 OAK on drones

OAK cameras are light-weight, low-power and performant Spatial AI devices for edge applications, which make them
the perfect solution for drone applications, such as:

• Localization of the drone and detected objects around it, as presented by the CVAR-U.P.Madrid team (video
here). See SLAM with OAK for additional information.

• Precision landing on the target, as demonstrated here by Rishabh Singh. This is possible as object detection
runs on the OAK camera at about 30 FPS and has below 150ms delay from camera to the controller.

• Emergency landing when your battery is running low. Semantic depth provides 3D location (depth points) of
suitable areas to land (eg. grass fields). Stephan Sturges has developed OpenLander repo for this application.

• Follow-me drone with the help of 3D object detection and tracking, drone is able to follow you around, as
demonstrated here by Rishabh Singh (code here). One could make this solution more robust when combining
this with either face recognition or person reidentification AI model.

A few other demos:

• Team QuetzalC++ (OpenCV AI comp) - Warehouse inspection with autonomous drones - video

• Team QUTEagles (OpenCV AI comp) - Drone-based biosignatures detection system for planetary exploration
- video

• Augmented Startups built a gesture controlled drone and has 3-part tutorial on YouTube - video

106 Chapter 4. Ecosystem

https://www.arducam.com/docs/opencv-ai-kit-oak/performing-location-with-visual-slam/
https://github.com/bharath5673/depthai-slam
https://github.com/rpautrat/SuperPoint
https://arxiv.org/abs/1712.07629
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc2/
https://docs.luxonis.com/projects/hardware/en/latest/pages/rae/
https://www.spectacularai.com/
https://docs.luxonis.com/projects/hardware/en/latest/pages/rvc/rvc3
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/sync_frames.html#frame-capture-graphs
https://github.com/luxonis/depthai-experiments/tree/master/gen2-syncing#imu--rgb--depth-timestamp-syncing
https://vimeo.com/583816850/3f084d9a9f
https://vimeo.com/583816850/3f084d9a9f
https://www.youtube.com/watch?v=qonVE3Tg8Uw
https://github.com/stephansturges/OpenLander
https://www.youtube.com/watch?v=I0UVoWEmIpA
https://github.com/rishabsingh3003/ardupilot_depthai_scripts
https://github.com/luxonis/depthai-experiments/tree/master/gen2-face-recognition
https://github.com/luxonis/depthai-experiments/tree/master/gen2-pedestrian-reidentification
https://youtu.be/juOrtGBb7KQ
http://bit.ly/QUTEaglesVideo
https://www.youtube.com/watch?v=TYiiLTioecg

DepthAI Docs

4.11.1 Drone on-device NN-based localization

A novel AI approach for spatial localization using an OAK camera. The drone runs on-device neural inferencing to
provide positioning of the drone. Paper here, Github repo here.

OAK ArduPilot integration

Rishabh Singh wrote a few OAK-ArduPilot integration applications like a follow-me app, obstacle avoidance app,
and precision landing app. He also wrote 2 blog posts about the integration; Part 1 and Part 2.

Camera vibration

Camera vibrations can be a big challenge in applications such as drones, especially if you are using Auto-Focus color
camera. To decrease the camera vibrations, we suggest firmly mounting the device on the drone. One could also
consider adding shock absorption rubbers (eg. these) to decreate the vibrations. AugmentedStartup has also designed
an OAK-1 anti-vibration mount for his drone project:

For drone applications we would also suggest Fixed-Focus color camera, more info here.

4.12 OAK for Education

By creating OAK devices, our goal is to make Spatial AI accessible and easy to use by anyone. That’s why we want
to share some of the community projects built around it that help us in achieving our common goal.

4.12.1 Cortic AI Toolkit

The Cortic A.I. Toolkit is a software package that enables makers and students to learn and experiment with A.I.
algorithms on the popular Raspberry Pi 4B single-board computer. Provides a gentle introduction to A.I. for beginners
while offering a lot of customization possibilities and depth perception so that users can progressively grow with it

You can read more about this project on the release post or by visiting this project on GitHub

Kudos to the Cortic AI team for sharing their awesome tool!

4.12. OAK for Education 107

https://link.springer.com/article/10.1007/s11554-023-01259-x
https://github.com/QuetzalCpp/DeepPilot4Pose
https://discuss.ardupilot.org/u/rishabsingh3003
https://discuss.ardupilot.org/t/easy-way-to-integrate-ai-with-ardupilot-oak-d-part-1
https://discuss.ardupilot.org/t/easy-way-to-integrate-ai-with-ardupilot-oak-d-part-2
http://bit.ly/ShockMountRubber
https://www.thingiverse.com/thing:4888638
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/af_ff.html#a-handling-high-vibrations
https://github.com/cortictechnology/cep/blob/main/resources/Visual-Programming.gif
https://www.cortic.ca/post/introducing-the-cortic-a-i-t
https://github.com/cortictechnology/cait

DepthAI Docs

4.12.2 Looking for more?

You can also check out our Discuss Forum, where you can meet people behind these projects or share your idea/demo
- we’re looking forward to meeting you there!

4.13 Support

Running into issues or have questions? We’re here to help. Before requesting support, please check Troubleshooting
documentation page. To help you debug the issue you have the fastest and most efficient way, please provide all the
details of the issue you are experiencing.

4.13.1 Requesting support

To request support from our engineers, create a new post at our Forum. Please provide as much information as
possible, and follow the guidelines below.

DepthAI issue

DepthAI (pipeline) issue

If you are experiencing depthai pipeline issues (freezing, crashing, etc.), please provide a Minimal Reproducible
Example (MRE) docs on how to create MRE here. This means everything, including minimal script, required
model .blobs, and any other assets, should be compressed into single archive. Make sure that:

1. Assets/model blobs are located at the right path.

2. Remove any unnecessary code: commented out code, and code that isn’t relevant to the depthai/pipeline code
(so host-side code).

3. Please provide minimal reproducible code. Main script should be as short as possible.

Besides MRE, please also provide the following information when you are requesting support:

• Name of the OAK camera (all camera names here).

• The version of the depthai library and bootloader you are using (check with OAK Device Manager). If it’s
not the latest release, please also try updating the depthai version to the latest (python -mpip install
depthai -U).

• If there was a crash, provide debug log by setting depthai log level to debug.

• Screenshot of your pipeline using the Pipeline Graph tool.

IP related issues

If you are having an issue with an app that contains your (company’s) Intellectual Property, eg. NN model or business
logic, you should first remove this IP before creating MRE:

• For NN model, replace your model with a public model. So if you trained an object detection NN, replace it
with eg. public pretrained Mobilenet-SSD.

• For business logic, simply remove the code. MRE shouldn’t contain much host-side code where your business
logic would be.

108 Chapter 4. Ecosystem

https://discuss.luxonis.com/
https://discuss.luxonis.com/
https://stackoverflow.com/help/minimal-reproducible-example
https://docs.luxonis.com/projects/hardware/en/latest/
https://docs.luxonis.com/projects/api/en/latest/components/bootloader/#device-manager
https://github.com/luxonis/depthai-core/releases
https://docs.luxonis.com/projects/api/en/latest/tutorials/debugging/#depthai-debugging-level
https://github.com/geaxgx/depthai_pipeline_graph

DepthAI Docs

Connectivity issue

Can’t connect to an OAK USB camera

Check first:

1. If you’re on Linux, check whether you have setup udev rules

2. Check whether you are using a working USB3 cable - this is a common issue. If you are using USB2 cable,
please see Forcing USB2 Communication tutorial

3. If you are using a longer USB3 cable (above 1 meter), we’d recommend first trying a shorter USB3 cable, and
checking Using longer USB cables

If you are experiencing connectivity issues with your OAK USB device, please provide the following information:

• OAK device model

• DepthAI version

• Cable specification you are using

Can’t connect to an OAK PoE camera

Check first:

1. Getting started with OAK PoE devices

2. From the same page, please check PoE Troubleshooting page

3. Try Manually specify device IP of your OAK device

4. If you have flashed invalid static IP and device isn’t accessible anymore, we suggest performing a Factory reset

If you are experiencing connectivity issues with your OAK PoE device, please provide the following information:

• OAK device model

• DepthAI version and Bootloader version (ideally OAK Device Manager screenshot)

• Terminal output of ipconfig / ifconfig command

• IP address of the device. This can be obtained either from pinging the device, by checking the DHCP server
logs, or using IP scanner application.

Hardware issue

Hardware (OAK) issue

Provide detailed description of the problem, describe the device behavior, how and when it fails. When contacting
support, please include the following information:

• Device model, and batch number (from the barcode label). If you don’t have the box, provide order number

• Photos of the whole hardware setup, close captures of region of an issue

• Board revision (if SoM based, also HW revision of SoM)

Example barcode label with marked batch number:

4.13. Support 109

https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html#poe-troubleshooting
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html#manually-specify-device-ip
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/getting-started-with-poe.html#factory-reset
https://docs.luxonis.com/projects/api/en/latest/components/bootloader/#device-manager

DepthAI Docs

Image Quality issue

Image Quality (IQ) issue

If you are experiencing image quality issues (blurry, noisy, etc.), please first check Improving Image Quality docs. For
reporting an issue, please provide detailed description of the problem, how and when the device fails. Please include
the following information:

• Device model, and batch number (from the barcode label). If you don’t have the box, please let us know your
order number and when did you purchase the device.

• Image captures (high resolution), please add remarks to the images if needed

Calibration issue

Calibration issue

If you encountered an issue while calibrating an OAK, please provide a detailed description of the problem. When
contacting support, please include the following information:

• Device model

• OS name

• DepthAI branch used

• Full command used for calibration

• Dataset folder

• Json file from calibration

• Image outputs

110 Chapter 4. Ecosystem

https://docs.luxonis.com/projects/api/en/latest/tutorials/image_quality/
https://docs.luxonis.com/projects/hardware/en/latest/pages/guides/calibration.html
https://github.com/luxonis/depthai-python/blob/main/examples/calibration/calibration_dump.py

DepthAI Docs

Converting NN model issue

Issue when converting a Neural Network model

We officially support models for which we have notebooks at depthai-ml-training. If you encounter any error during
converting blob via tools.luxonis.com or blobconverter, please provide the following information:

• Screenshot of your setup, including error message

• .pt file used

• Training procedure - notebook/repo/library name, version, commit

• Exact input parameters

• Current output, expected output, and input images for testing

For support, we suggest creating an Issue on depthai-ml-training repository.

Example screenshot:

4.13. Support 111

https://github.com/luxonis/depthai-ml-training/tree/master/colab-notebooks
https://tools.luxonis.com
https://blobconverter.luxonis.com
https://github.com/luxonis/depthai-ml-training/tree/master/colab-notebooks

DepthAI Docs

4.13.2 Refunds and returns policy

At Luxonis, we are customer-focused. Our success is only possible if our customers believe in the value of our
products. If for any reason you are not satisfied with your purchase, please let us know and we will make it right.

If you desire a refund, please contact support@luxonis.com with your order number and reason for the return. Refund
requests within 60 days of the purchase date will be honored in full.

Shipping costs for returns within 60 days of purchase will be covered by Luxonis. Shipping costs for returns after 60
days from the purchase date will be born by the customer.

If a return is initiated because of damaged, defective, or incorrect goods, Luxonis will provide a replacement order at
no cost to the customer.

Refunds will be processed within 14 days after the product has been returned.

112 Chapter 4. Ecosystem

mailto:support@luxonis.com

	DepthAI Viewer
	Example Use Cases
	Tools & API Examples
	Ecosystem
	First steps with DepthAI
	Spatial AI
	AI / ML / NN
	Depth perception
	Computer Vision
	On-device programming
	FAQs & How-To
	OAK as a webcam
	Troubleshooting
	SLAM with OAK
	OAK on drones
	OAK for Education
	Support

